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Smart contracts are becoming appealing targets for hackers because of the vast amount of cryptocurrencies under their

control. Asset loss due to the exploitation of smart contract codes has increased signiicantly in recent years. To guarantee that

smart contracts are vulnerability-free, there are many works to detect the vulnerabilities of smart contracts, but only a few

vulnerability repair works have been proposed. Repairing smart contract vulnerabilities at the source code level is attractive

as it is transparent to users, whereas existing repair tools, such as SCRepair and sGuard, sufer from many limitations: (1)

ignoring the code of vulnerability prevention; (2) possibly applying the repair to the wrong statements and changing the

original business logic of smart contracts; (3) showing poor performance in terms of time and gas overhead.

In this work, we propose machine learning guided rule-based automated vulnerability repair on smart contracts to improve

the efectiveness and eiciency of sGuard. To address the limitations mentioned above, we design the features that characterize

both the symptoms of vulnerabilities and the methods of vulnerability prevention to learn various vulnerability patterns and

reduce false positives. Additionally, a ine-grained localization algorithm is designed by traversing the nodes of the abstract

syntax tree, and we reine and extend the repair rules of sGuard to preserve the original business logic of smart contracts

and support new vulnerability types. Our tool, named sGuard+, reduces time overhead based on machine learning models,

and reduces gas overhead by fewer code changes and precise patching.

In our experiment, we collect a publicly available vulnerability dataset from CVE, SWC and SmartBugs Curated as a ground

truth for evaluations. Overall, sGuard+ repairs more vulnerabilities with less time and gas overhead than state-of-the-art

tools. Furthermore, we reproduce about 9,000 historical transactions for regression testing. It is shown that sGuard+ has no

impact on the original business logic of smart contracts.
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CCS Concepts: · Software and its engineering→ Automatic programming; · Security and privacy→ Software

security engineering.

Additional Key Words and Phrases: Vulnerability repair, smart contract, machine learning

1 INTRODUCTION

Ethereum is one of the most popular blockchain platforms [56]. It is designed to enable self-enforcing programs,

called smart contracts, to execute transactions automatically. In recent years, thousands of applications built

based on smart contracts have revolutionized many areas [34], such as inance, arts and collectibles, gaming

and technology. Unlike traditional computer programs, smart contracts can process not only data but also

cryptocurrencies, so that a large amount of digital assets are under the control of smart contracts. With the rise

of the market capitalization of cryptocurrencies, smart contracts have become appealing targets for hackers.

For instance, the notorious DAO hack [43] resulted in 70 million dollars being plundered in 2016, and the same

vulnerability was exploited by the Uniswap/Lendf.Me hack [82] in 2020 and the Cream Finance hack [85] in 2021.

The Crypto Crime Report [18] released by Chainalysis shows that more than 2 billion dollars are stolen in the

inance area in 2021. Among them, the loss caused by smart contract code exploitation accounts for approximately

half. To protect property safety and maintain social stability, it is essential and urgent to ensure that smart

contracts are vulnerable-free.

Vulnerability detection and repair are integral parts of the smart contract development life cycle. In recent

years, there have been a large number of works on detecting diferent vulnerabilities [28], whereas only a few

vulnerability repair works have been proposed to guarantee that the vulnerabilities are free. To the best of our

knowledge, there are only two automatic vulnerability repair tools SCRepair [115] and sGuard [75] that work at

the source code level of smart contracts. SCRepair adopts a gas-aware genetic search technique that generates

candidate patches using a set of predeined mutation operators and chooses patches with low gas consumption.

However, the search-based approach applied by SCRepair has limited efectiveness with respect to vulnerabilities

that require complex code changes [42]. In contrast, sGuard adopts a rule-based approach that has the advantage

of deining complex change rules to repair diferent vulnerabilities. However, the efectiveness and eiciency of

sGuard need to be improved due to the following limitations.

L1 The efectiveness of vulnerability detection. sGuard Performs static analysis on symbolic execution traces

to detect vulnerabilities. Similar to existing static analysis tools [32], sGuard sufers from a high false

positive rate. As a result, the patches introduced by sGuard due to false positives cause a large amount of

unnecessary gas overhead, so that the transaction fees of the repaired smart contracts increase signiicantly.

L2 The correctness of vulnerability repair. Correctly repairing a smart contract requires us to remove the

vulnerability whilst preserving the business logic. However, the repair rules of sGuard may change the

original business logic when the vulnerable code has interprocedural calls between functions or side efects

of expressions. One of the repair rules of sGuard even introduces a new access control vulnerability

CVE-2020-19765 [3]. Moreover, sGuard implements code transformations at the string level rather than

the abstract syntax tree (AST), which sometimes leads to uncompilable contracts.

L3 The time and gas overhead. As shown in the experiments of sGuard, more than one third of smart contracts

are not repaired due to timeout. Therefore, the time consumption of sGuard can be greatly improved as

the complexity of smart contracts increases. Moreover, the redundant patch code introduced by sGuard

signiicantly increases the gas overhead.

In this work, we propose a machine learning-guided automated vulnerability repair approach, which aims to

improve the efectiveness and eiciency of sGuard with respect to both vulnerability detection and repair. To

address the limitation L1, we utilize the machine learning technique to learn vulnerability patterns in a general

way without being limited by the speciic testing and analysis approaches applied by rule-based tools. In particular,
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we design not only the features (Vul-Fs) that characterize the symptoms of vulnerabilities, but also the features

(Pre-Fs) that characterize the methods of vulnerability prevention, as is known in secure coding practices [68], to

reduce false positives. To address limitation L2, we reine and extend the repair rules of sGuard to preserve the

original business logic of smart contracts, and the code transformation is implemented based on AST nodes to

guarantee that the syntax of the repaired smart contracts is correct. To address limitation L3, we design new

repair rules that require fewer code changes and reduce unnecessary patch code based on accurate localization to

reduce gas overhead. Furthermore, the time performance of the machine learning models outperforms sGuard.

In this work, we implement a tool, named sGuard+, which works by the following three key steps.

S1 Vulnerability detection. Binary classiicationmachine learningmodels are utilized to detect each vulnerability

type at the granularity of the function level. The training set is labeled according to three state-of-the-art

vulnerability detection tools (Slither, Securify, andMythril). The features that contain Vul-Fs and Pre-Fs

are extracted from both the source code and the bytecode of smart contracts.

S2 Vulnerability localization. A localization algorithm is designed to identify candidate statements for repair

in the vulnerable functions reported by machine learning models. Speciically, the AST nodes of each

vulnerable function are traversed to ind the target statements or variables that need to be modiied. Note

that this step can be used to further ilter false positives that cannot ind the target code.

S3 Vulnerability repair. The localized vulnerable AST nodes are transformed according to the repair rules

designed for each speciic type of vulnerability. To preserve the original business logic of smart contracts,

we reine and extend the repair rules of sGuard by deining more precise conditions based on the analysis

of the inter-procedural call graph (ICG) and side efects of expressions. Additionally, new repair rules are

designed for two new types of vulnerability and fewer gas overhead.

In our experiment, the eXtreme Gradient Boosting (XGBT) model for binary classiication is selected because

it has the highest average F1 score of 0.78 on the training set and 0.86 on the test set. Its F1 score for each

vulnerability type is close to that of the best performing tool among the three state-of-the-art rule-based tools,

and signiicantly higher than the results of sGuard and the two existing ML-based tools. Additionally, we collect

a publicly available vulnerability dataset from CVE [27], SWCRegistry [72], and SmartBugs Curated (SBCURATED)

[32] as a ground truth of vulnerabilities to evaluate the efectiveness and eiciency of sGuard+. Overall, the

vulnerability repair rate of sGuard+ increased by 51 pp over sGuard on PVD, and sGuard+ preserves the

original business logic according to regression testing. sGuard+ only takes approximately one-ifth the time of

sGuard, and the gas overhead of deploying contracts and calling functions of sGuard+ decreased 7.1 pp and

6.1 pp, respectively, compared to sGuard. Furthermore, we evaluate sGuard+ in the dataset of the experiment of

SCRepair so that sGuard+ can be compared with SCRepair based on the results shown in the paper of SCRepair.

The results show that the vulnerability repair rate of sGuard+ increased by 44 pp over SCRepair, and sGuard+

consumes only 0.3% of the time spent by SCRepair.

To sum up, the contributions of this work are listed as follows.

• Our work makes the irst attempt to use machine learning to guide automated vulnerability repair at the

source code level of smart contracts to improve the efectiveness and eiciency of the repair tool.

• We design the features that characterize both the symptoms of vulnerabilities and the methods of vulnera-

bility prevention to learn various vulnerability patterns and reduce false positives.

• We extend and improve the repair rules of sGuard to further guarantee its correctness at the AST level.

Our repair rules are evaluated by large-scale regression testing with thousands of historical transactions,

which shows that sGuard+ successfully repairs sGuard’s unintended modiication of the business logic.

• We implement the tool sGuard+ that supports ive types of vulnerability and compare sGuard+ with

the state-of-the-art smart contract repair tools (sGuard and SCRepair) at the source code level. The

ACM Trans. Softw. Eng. Methodol.
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results show that sGuard+ repairs more vulnerabilities than sGuard and SCRepair with less time and gas

overhead. The source code of sGuard+ and the datasets are publicly accessible1.

2 BACKGROUND

In this section, we irst introduce smart contracts and Solidity. Then, we present ive types of common vul-

nerabilities of smart contracts. Finally, using a motivating example, we discuss the challenges of automatically

repairing or ixing these vulnerabilities using state-of-the-art tools.

2.1 Smart Contracts and Solidity Language

A smart contract can be seen as a vending machine, as described by Nick Szabo [98], which guarantees a certain

output with the right inputs. Since smart contracts hold substantial funds and react to transactions sent by

executing code, malicious attacks exploiting program vulnerabilities (e.g., DAO [1] and Parity wallet hack [2])

have caused huge economic losses. In this work, we focus on smart contracts on Ethereum, which is the most

popular blockchain platform and supports Turing-complete programming languages for smart contracts.

In Ethereum, users can create two types of accounts: the external owned account (EOA) controlled by private

keys, and the contract account controlled by smart contract code. Both account types can store and transfer

Ethereum’s native cryptocurrency, named Ether, and exist in the form of a 42-character hexadecimal address.

The only way for users to update the state of the Ethereum network is to initiate a transaction with the EOA. A

transaction can be a direct ether transfer from one EOA to another EOA, the deployment of a contract, or the

execution of a contract code. Every transaction must be veriied by the miners before being recorded on the

blockchain. However, in order to prevent malicious transactions from executing code with an ininite loop to

waste miner’s computing resources, users need to pay enough additional fees, called gas, based on the computation

consumed by the code. If the transaction does not pay enough gas, it will never be veriied successfully. It can

be seen that a key diference between smart contracts and traditional programs is that the more complex the

contract code, the more gas the user needs to bear.

Solidity is the most popular high-level language for implementing smart contracts on Ethereum. Solidity is

inluenced by existing programming languages (e.g., C++, Python and JavaScript), and it has some contract-speciic

features, such as modiier clauses, event notiiers for listeners, and custom global variables [6]. In general, just

like the class keyword in C++, the contract keyword can be used to deine a contract object in Solidity, which

also follows multiple inheritance, including polymorphism. In a contract object, the function keyword can be

used to deine custom-speciic functions, and the dot (.) operator can be used to invoke the function associated

with the particular object. By default, a contract object has a special function without a function name, called

fallback function, which cannot accept arguments and return anything. The fallback function is executed when a

called function identiier does not match any of the available functions in the contract, or an external call does

not supply any data such as whenever the contract receives Ether without any other data associated with the

transaction.

In order to interact with data on the blockchain, Solidity has many built-in global variables and functions,

which can be used to read or update the status of the Ethereum network, or identify the transaction information.

For example, variables tx.origin and msg.sender of the address type represent the sender of the transaction and

the sender of the message, respectively. Note that these two variables may represent diferent information because

a single transaction may execute multiple contract codes with diferent addresses. For example, when a EOA

���������� calls a function �� in the contract address ��������, and the function �� executes the code �������� .�� (),

named external call, calling the function �� in contract address �������� . In function �� , both the variable tx.origin

and msg.sender represent the address ����������, while in function �� , the variable tx.origin also represents the

1https://doi.org/10.5281/zenodo.8249340
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Table 1. The valid Ethereum Virtual Machine opcodes from Yellow Paper.

Bytecodes Opcodes Description

0x00 ~ 0x0b STOP ADD MUL SUB DIV SDIV MOD SMOD ADDMOD MULMOD EXP

SIGNEXTEND

STOP and aritmetic operations.

0x10 ~ 0x1d LT GT SLT SGT EQ ISZERO AND OR XOR NOT BYTE SHL SHR SAR Comparision and bitwise logic operations.

0x20 SHA3 Compute Keccak-256 hash.

0x30 ~ 0x3f ADDRESS BALANCE ORIGIN CALLER CALLVALUE CALLDATALOAD

CALLDATASIZE CALLDATACOPY CODESIZE CODECOPY GASPRICE

EXTCODESIZE EXTCODECOPY RETURNDATACOPY RETURNDATASIZE

EXTCODEHASH

Get environmental information.

0x40 ~ 0x48 BLOCKHASH COINBASE TIMESTAMP NUMBER DIFFICULTY GASLIMIT

CHAINID SELFBALANCE BASEFEE

Get block information.

0x50 ~ 0x5b POP MLOAD MSTORE MSTORE8 SLOAD SSTORE JUMP JUMPI PC MISIZE

GAS JUMPDEST

Stack, memory, storage, and low operations.

0x60 ~ 0x7f PUSH1 ... PUSH32 Push operations.

0x80 ~ 0x8f DUP1 ... DUP16 Duplication operations.

0x90 ~ 0x9f SWAP1 ... SWAP16 Exchange operations.

0xa0 ~ 0xa4 Log0 ... LOG4 Logging operations.

0xf0 ~ 0xf CREATE CALL CALLCODE RETRUN DELEGATECALL CREATE2

STATICCALL REVERT SELFDESTRUCT

System operations.

address ����������, but the variable msg.sender represents the address ��������. Moreover, the built-in function

selfdestruct can be used to destroy the current contract, and three built-in member functions (call.value, send,

transfer) of the address type can be used to transfer Ether to an address in the form of address.transfer().

Furthermore, the Ethereum Virtual Machine (EVM) is a runtime environment for Ethereum transaction

execution, and smart contracts developed in Solidity are compiled into bytecode that can be executed by the

EVM. The bytecode is a binary string, and each byte is an opcode. The EVM opcodes described in the Ethereum

Yellow Paper [36] are shown in Table 1. In detail, the EVM opcodes can be roughly divided into 5 groups: 1) The

opcodes from 0x00 to 0x20 are related to arithmetic operations. 2) The opcodes from 0x30 to 0x48 are related to

environmental information and block information. 3) The opcodes from 0x50 to 0x9f are related to data handling.

Note that EVM is stack-based and has three data location types, namely stack, memory, and storage. 4) The

opcodes from 0xa0 to 0xa4 are related to logging operations. 5) The opcodes from 0xf0 to 0xf are related to system

operations. Compared to common arithmetic, stack, and log operations, opcodes that obtain key information or

refer to critical system operations are often associated with vulnerabilities. For example, the opcode ORIGIN for

obtaining the execution origination address is commonly used to authorize transactions, which is associated

with authorization through the tx-origin vulnerability [104]. The opcode CALL to send messages to an account

is executed in every transaction sending Ether, which is an essential feature for reentrancy vulnerability and

unchecked call return value vulnerability. The opcode SELFDESTRUCT to halt execution and register accounts for

later deletion means that the contract will be destroyed, which is related to the vulnerability of the unprotected

SELFDESTRUCT instruction.

2.2 Commonly Known Vulnerabilities And Preventative Strategies

Smart Contract Weakness Classiication (SWC), as a well-known and well-deined standard, was proposed

formally in EIP-1470 [105], which aims to classify and identify weaknesses that lead to vulnerability in smart

contracts. In this paper, we focus on the following ive common vulnerabilities 2.

2In order to reduce the confusionwith the vulnerability deinitions in existing papers (e.g., [20] [75] [102]), we uniformly describe vulnerabilities

according to the deinition of SWC.

ACM Trans. Softw. Eng. Methodol.



6 • Gao et al.

1 function sell(uint256 numTokens) public {

2 require(balanceOf[msg.sender] >= numTokens);

3 balanceOf[msg.sender] -= numTokens;

4 msg.sender.transfer(numTokens *

PRICE_PER_TOKEN);

5 }

(a) An example of IOU vulnerability

from SWC-101 test cases.

1 function callnotchecked(address payable

_callee , uint amount) public {

2 require(balances[_callee] >= amount);

3

4 _callee.call.value(amount)("");

5 balances[_callee] -= amount;

6 }

(b) An example of UCR vulnerability

from SWC-104 test cases.

1 function sudicideAnyone () {

2

3 selfdestruct(msg.sender);

4

5

6 }

(c) An example of USI vulnerability

from SWC-106 test cases.

1 function withdraw(uint amount) public{

2 if (credit[msg.sender]>= amount) {

3 require(msg.sender.call.value(amount)

());

4 credit[msg.sender]-=amount ;}

5 }

(d) An example of REN vulnerability

from SWC-107 test cases.

1 function sendTo(address receiver , uint amount) public {

2 require(tx.origin == owner);

3 receiver.transfer(amount);

4 }

(e) An example of TXO vulnerability from SWC-115 test cases.

Fig. 1. Examples of 5 vulnerability types.

(I) SWC-101: Integer Overlow and Underlow Vulnerability (IOU)

Vulnerability: A smart contract sufers from integer overlow and underlow vulnerability when an

arithmetic operation reaches the maximum or minimum value. The main reason for this vulnerability

is that the EVM speciies ixed-size data types for integers and ignores whether the data are outside the

range of the variable type. For example, Figure 1a shows an example of arithmetic vulnerability, in which

the product of numTokens * PRICE_PER_TOKEN in line 4 may exceed the range of the data type uint256.

This integer overlow results in an unexpected value of transfer. Note that although integer overlow and

underlow vulnerability is a solved issue with latest Solidity compiler [7], it is still relevant since majority

of the existing smart contracts still sufer from this problem.

Preventative Strategy: The most common way to avoid the integer overlow and underlow vulner-

ability is to replace arithmetic operators with corresponding safe math functions [80], which set up

safety condition checks for arithmetic operations such as adding the statement Require((numTokens *

PRICE_PER_TOKEN)/numTokens == PRICE_PER_TOKEN); after the multiplication in line 4 of Figure 1a to guar-

antee the product is correct. If the safety check fails, the transaction executing the current code fails.

(II) SWC-104: Unchecked Call Return Value Vulnerability (UCR)

Vulnerability:A smart contract sufers from unchecked call return value vulnerability if the return value of

a low-level call method (e.g., address.send(), address.call(), address.delegatecall() or address.callcode())

is unchecked. Each low-level call method returns a value of type Boolean, which indicates that the call

is succeeded or failed. Therefore, if the return value is not checked, it will lead to unexpected behavior

and change the program’s business logic. Figure 1b shows an example in which the balance of the address

_callee will be reduced even if the transaction sending Ether at line 4 fails.

Preventative Strategy: The unchecked call return value vulnerability can be avoided by directly adding

a conditional check on the return value. For example, we can irst declare a variable of type Boolean to

ACM Trans. Softw. Eng. Methodol.
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store the return value of the low-level call in the forth line of Figure 1b, such as bool success = _callee.

call.value(amount)("");, then add the statement Require(success); next to the call statement to guarantee

that the return value must be true.

(III) SWC-106: Unprotected SELFDESTRUCT Instruction Vulnerability (USI)

Vulnerability: A smart contract sufers from unprotected SELFDESTRUCT instruction vulnerability when

missing or insuicient access controls exist for the SELFDESTRUCT instruction. This vulnerability is caused

by not checking the identity or permission of the caller when destructing the contract. An example of this

vulnerability is shown in Figure 1c. Any user can destroy the contract and transfer all the Ether by calling

this public function since there is no permission check.

Preventative Strategy: The unprotected SELFDESTRUCT instruction vulnerability can be avoid by using

proper access control on the self-destruct function. As shown in the secure coding practices for smart

contract access control [78], the concept of ownership is the most common and basic form of access control,

which only grants the contract owner the permission to call some functions. For example, in Figure 1c, we

can add the statement Require(msg.sender == _owner); to prevent any other normal user from calling the

function.

(IV) SWC-107: Reentrancy Vulnerability (REN)

Vulnerability: A smart contract sufers from reentrancy vulnerability when a malicious contract calls

back into the calling contract in undesirable ways before the irst invocation of the function is inished. As

shown in Figure 1d, the business logic of the function withdraw is that if the balance (credit[]) of the user

(msg.sender) is greater than the requested amount (line 2), send Ether to the user without any data attached

(line 3) and then deduct the user’s balance (line 4). It sufers from REN because if the variable msg.sender is

the address of a malicious contract (��) whose self-deined fallback function (��) has an external call to

this victim function withdraw (��), sending Ether to the �� (line 3) will cause the �� to be executed and

then call the �� again, so that the attacker can withdraw Ether recursively before deducting the transfer

amount from its balance.

Preventative Strategy: There are two most common ways to avoid reentrancy vulnerability. 1) As the

recommendation of solidity documentation [6], using the Checks-Efects-Interactions pattern [95], which

delays interaction with external contracts after checking for conditions and efects to the state variables,

can make the reentrancy vulnerability free. For example, in Figure 1d, we can move the efect (line 4) to

the front of the interaction (line 5) so that the balance is deduced before the transfer of Ether. Note that

if the transfer fails, the efects of the transaction will be reversed, so that the balance is not changed. 2)

As shown in the secure coding practices for the smart contract [81], we can add a mutex modiier to the

function to avoid reentrancy vulnerability. Just like the protection of critical resources in the operating

system, the mutex can guarantee that other calls to the function cannot be executed successfully until

the current calling to the function is executed completely. Hence, the malicious external contract cannot

transfer Ether again before its balance is deducted.

(V) SWC-115: Authorization through Tx-origin Vulnerability (TXO)

Vulnerability: A smart contract sufers from authorization through tx-origin vulnerability when misusing

tx.origin for transaction authorization. In Solidity, the global variable tx.origin refers to the address of

the external owned account (EOA) that initiates the transaction, while the global variable msg.sender refers

to the address of the EOA or contract account that invokes the function. For example, if an EOA initiates

a transaction by calling the function �� of the contract � and the function �� has an external call to the

function �� of the contract �, the values of tx.origin in function �� and �� are both the address of the

EOA, while the values of msg.sender in function �� and �� are the address of the EOA and the address of

the contract �, respectively. Figure 1e shows an example of TXO, which can be exploited in a way similar

to a phishing attack. Speciically, the attacker can develop a phishing contract �� , whose fallback function

ACM Trans. Softw. Eng. Methodol.
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has an external call to function sendTo with the parameter set by the attacker. If the account of the owner

address sends a transaction to the contract �� , the fallback function of �� will be invoked and the attacker

will steal the money because the authorization at line 2 is passed.

Preventative Strategy: The most common way to avoid the tx-origin vulnerability is to replace the

variable tx.originwith msg.sender for authorization. For example, in Figure 1e, if the variable tx.origin at

line 2 is replaced by msg.sender, the code at line 3 for transfer cannot be executed unless the owner address

initiates a transaction that directly invokes the function sendTo.

These ive types of vulnerabilities outnumber most other types and are of high impact [32] [89] [94]. Fur-

thermore, the Decentralized Application Security Project [73] (DASP), which aims to discover smart contract

vulnerabilities in the security community, covers the top 10 smart contract vulnerabilities ranked by the amount

of inancial loss in real-world projects. Among them, the top 4 vulnerabilities are: reentrancy (REN), access

control that contains USI and TXO, arithmetic issues also known as IOU, and unchecked return values for low

level calls (UCR) caused by smart contract programming or Solidity language and toolchain as inferred in [20].

Also pinpointed by the survey [20], other vulnerabilities in the top 10 (not addressed by this paper) are caused by

the design and implementation of Ethereum, which cannot be repaired with automatic program repair techniques.

Therefore, we focus on ixing these ive vulnerabilities as described above.

2.3 Problem Definition

Our problem is deined as follows. Given a smart contract � , construct a smart contract �′ such that �′ satisies

the following.

• Soundness: �′ is free of any of the above vulnerabilities.

• Correctness: For any legitimate transaction �� , if �� invokes the function � in � successfully, there exists a

function � ′ in �′ that can be invoked by �� successfully and output the same result as � .

• Eiciency: �′ execution speed and gas consumption are minimally diferent from those of � .

2.4 Summary of Existing Vulnerability Datasets

We introduce the existing public vulnerability datasets of the smart contracts of Ethereum. These datasets can be

used as a benchmark to evaluate the efectiveness of existing vulnerability detection and repair tools.

2.4.1 Common Vulnerabilities and Exposures (CVE).

Common vulnerabilities and exposures (CVE), which is sponsored by the US Department of Homeland Security

(DHS) Cybersecurity and Infrastructure Security Agency (CISA), aims to identify, deine, and catalog publicly

disclosed cybersecurity vulnerabilities. A total of 531 vulnerability records for Ethereum smart contracts can be

retrieved using keywords smart contract on the CVE website [27] until January 1, 2022. Additionally, the other

5 records [4] are also included, although the keywords are not explicit. Overall, the contract source code iles

are downloaded and classiied according to the ive types of vulnerabilities described in ğ 2.2. After removing

duplicates, we obtain 100 unique contracts.

2.4.2 Smart Contract Weakness Classification Registry (SWCRegistry).

As mentioned in ğ 2.2, SWCRegistry [72] ofers a complete and up-to-date catalog of known smart contract

vulnerabilities and anti-patterns of smart contracts along with real-world examples. A total of 37 vulnerability

categories and 90 unique test cases (vulnerability samples) of smart contracts are in the SWCRegistry.

2.4.3 SmartBugs Curated Dataset (SBCURATED) .

SBCURATED [93] is part of the executional framework SmartBugs [39]. It is organized according to the DASP

taxonomy and contains 143 annotated vulnerable contracts with 208 tagged vulnerabilities. Note that SBCURATED
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Table 2. The number of vulnerable functions for five vulnerability types in three publicly available vulnerability datasets.

Datasets IOU UCR USI REN TXO Total

CVE 100 0 3 0 0 103

SWC 9 1 3 2 1 16

SBCURATED 20 67 2 31 2 122

Total without duplication 121/228 (53%) 67/228 (29%) 7/228 (3%) 31/228 (14%) 2/228 (1%) 228

was created from GitHub repositories, Blog posts, and the Ethereum network. Therefore, it partially overlaps

with CVE and SWCRegistry.

The number of vulnerable functions in three datasets (CVE, SWCRegistry, and SBCURATED) is shown in Table 2.

Note that the total number is the result after removing duplicate contract source code iles as [89]. Among them,

the number of functions with IOU (121), UCR (67), and REN (31) reaches a reasonable amount to contain a variety

of vulnerability patterns, while the number of functions with USI (7) and TXO (2) is much lower than other

vulnerability types because the patterns of these two types are not diverse.

In addition, the SolidiFI [45] benchmark repository contains a dataset of buggy contracts injected by bug

snippets, but there are three problemswith synthetic bugs as stated in [89]: 1) These vulnerabilities are independent

of each other and have no interaction with the remaining internal functions of the original contract. 2) Their code

logic is relatively simple, which involves only a few simple and commonly seen vulnerability patterns. 3) Most

vulnerabilities cannot be exploited in practice because the inserted buggy code is independent of the original

business logic. Therefore, the SolidiFI benchmark repository is not adopted in this paper.

3 MOTIVATION

In this section, we irst discuss the limitations of existing smart contract vulnerability repair tools in ğ 3.1. In

particular, in ğ 3.1.1, we provide a detailed account of the limitations of sGuard using a motivation example

as shown in Figure 2. Additionally, we summary the limitation of SCRepair in ğ 3.1.2. Then, we discuss the

limitations of existing ML-based vulnerability detection works on smart contracts in ğ 3.2.

3.1 Summary of Limitations of Existing Vulnerability Repairing Tools

Existing tools repair smart contracts at the source code level (e.g., sGuard [75], SCRepair [115]) or the bytecode

level (e.g., EVMPATCH [90], SMARTSHIELD [117], ELYSIUM [101]). In this study, we focus on those at the source

code level for two reasons: 1) The repair on the source code is conducive to the subsequent code audits that are

an indispensable part for contract security and public trust. 2) This study is an extension and enhancement of

the entire worklow of sGuard, which aims to guarantee that the contracts are vulnerability-free, so the repair

of the bytecode is out of scope. The limitations of the two existing source-code-level vulnerability repair tools,

sGuard and SCRepair, are introduced below. In general, factors that afect the efectiveness of repair include the

efectiveness of vulnerability detection, the accuracy of localization, and the correctness of the repair strategies.

3.1.1 Limitations of sGuard.

sGuard is a rule-based vulnerability repair tool, which has a built-in vulnerability detector. To identify potential

vulnerabilities, sGuard performs static analysis on the inite set of symbolic execution traces collected from

the smart contract. sGuard deines the vulnerability as a set of symbolic execution traces that sufer from the

vulnerability, which can be called vulnerable symbolic traces for short. For example, if a symbolic trace executes an

opcode CALL and subsequently executes an opcode SSTORE that depends on the opcode CALL in the same function,

then it is a vulnerable symbolic trace that sufers from reentrancy vulnerability. Correspondingly, the vulnerability

localization of sGuard utilizes the source mapping provided by the Solidity compilers, which maps opcodes to
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1 + contract sGuard {

2 + bool internal locked_;

3 + constructor() internal {

4 + locked_ = false; }

5 + modifier nonReentrant_() {

6 + require(!locked_);

7 + locked_ = true;

8 + _;

9 + locked_ = false; }

10 + }

11 - contract Reentrancy_bonus {

12 + contract Reentrancy_bonus is sGuard {

13 - function withdrawReward(address recipient) public {

14 + function withdrawReward(address recipient) nonReentrant_ public {

15 uint amountToWithdraw = rewardsForA[recipient ];

16 rewardsForA[recipient] = 0;

17 (bool success , ) = recipient.call.value(amountToWithdraw)("");

18 require(success);}

19 - function getFirstWithdrawalBonus(address recipient) public {

20 + function getFirstWithdrawalBonus(address recipient) public nonReentrant_ {

21 require (! claimedBonus[recipient ]);

22 rewardsForA[recipient] += 100;

23 withdrawReward(recipient);

24 claimedBonus[recipient] = true;}

25 }

Fig. 2. A motivation example of a contract with a REN vulnerability repaired by sGuard from the dataset SBCURATED.

AST nodes. The repair rules of sGuard are designed to implement code transformation, which includes three

basic operations: conditional insertion, variable substitution, and expression equivalence transformation.

As shown in Figure 2, its left side shows how a contract with the vulnerability REN is repaired by sGuard,

which serves as a motivation example in this paper.

In the original contract, as shown in the light red lines (-), the function getFirstWithdrawalBonus(line 19) has a

REN vulnerability. To delve into details, it irst checks if the claimed bonus of recipient is false (line 21); if it is,

then gives the recipient 100 rewards (line 22), followed by a call to the function withdrawReward (line 23), which

transfers the given rewards to the recipient (line 17), and inally sets the claimed bonus of recipient to true (line

24) to prevent claiming the reward again. However, before executing line 24, the transfer operation at line 17 may

trigger a malicious recipient’s callback function that calls the function getFirstWithdrawalBonus(line 19) again,

leading to the illegal claim of the reward again.

Therefore, in the repaired contract, as shown in the light green (+) lines, sGuard adds the same mutex modiier

nonReentrant_ to both of these functions (lines 14 and 20) to avoid REN. The modiier adds the statements in lines

6 and 7 before the statements in lines 21 and 15, and adds the statement in line 9 after the statements in lines 24

and 18, which attempts to ensure that the function is not allowed to be called successfully until the previous

invocation is executed completely.
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However, the repaired contract results in the contract’s original business logic being unable to execute

successfully. As shown on the right side of Figure 2, we show an interprocedural call graph (ICG) that represents

the internal calls between functions for the repaired contract, and utilize the line number of some key statements

to show the execution low. When calling the function getFirstWithdrawalBonus (line 20), the check in line 6 will

pass because the variable locked_ is initialized to false and then this variable is set to true in line 7. Next, the

statement in line 23 calls the function withdrawReward (line 14), but the check in line 6 will fail, resulting in the

entire invocation being a failure.

In the following, we illustrate three critical limitations of sGuard through this motivation example.

· SG-LIM1. In terms of vulnerability detection, sGuard produce some commonly seen false positives, which

may result in repeated insertion of patches. Ignoring the vulnerability prevention code [113] [79] is the root

cause of this limitation. For example, Figure 2 shows an example of sGuard that repairs REN by adding

the nonReentrant_ modiier to the vulnerable function getFirstWithrawalBonus. However, the repaired

function still conforms to the REN detection rule of sGuard (a trace where the opcode SSTORE executes

after the opcode CALL), which will be repeatedly repaired if it was input to sGuard.

· SG-LIM2. In terms of vulnerability localization, the vulnerability-free code that shares some opcodes with

the vulnerable symbolic traces may be afected by the repair rules of sGuard, which may cause unexpected

behaviors. The root cause of this limitation is that the vulnerable symbolic traces are symptoms of detected

vulnerabilities, rather than the exact locations that should be modiied according to the repair rules. For

example, the original and vulnerable function getFirstWithrawalBonus (��) in Figure 2 has an internal call to

the bug-free function withdrawReward (�� ) at line 23, which means �� shares some opcodes with �� . It shows

a typical vulnerability of cross-function reentrancy as deined in sGuard [75], which can be exploited only

by a call chain that contains at least two functions. In this case, the attacker can only withdraw money

recursively by calling ��, which is the only function that needs to be patched. However, sGuard inserts

the same mutex modiier nonReentrant_ into these two functions, which changes the original business

logic of the contract. In detail, for the version patched by sGuard as shown in Figure 2, if a user calls ��,

the assignment statement (line 7) will irst set the global variable locked_ to true. Then, the function call

statement (line 23) calls �� that has the same modiier nonReentrant_. Next, the same conditional statement

(line 6) will be executed in �� , but it cannot be passed. Therefore, the transaction calling �� will always be

rolled back.

· SG-LIM3. In terms of repair strategies, the patch code inserted by sGuard may have weak protection,

and the expression transformation may change the semantics of the original code if the expression has

side efects. The root cause of this limitation is that some special cases are beyond the scope of the repair

rules of sGuard. Additionally, there is only one repair strategy for each vulnerability type in sGuard.

However, the trade-of between more complicated repair rules and less gas consumption should be made

if there are alternative repair strategies. For example, as shown in Figure 2, the visibility of the mutex

variable locked_ (line 2) is internal, which denotes the contract that inherits the contract sGuard which

can change this mutex variable. It is reported to be vulnerable by CVE-2020-19765 [3], which may cause

the access check for REN prevention inefective. Moreover, the Solidity document [6] recommends the

Conditions-Efects-Interaction mode to avoid REN, which can be considered as a better repair strategy

of REN than mutex lock because it saves gas consumption. A more complicated repair rule is however

required in such a case.

· SG-LIM4. In terms of eiciency, the time consumption of sGuard is unacceptably prolonged as the

complexity of the contract increases. As shown in [75], when the maximum time consumption per contract

is 5 minutes, sGuard times out on 1767 (35.34%) out of 5000 contracts. The main reason is the path explosion
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Table 3. Existing ML-based vulnerability detection works

Year Work Technique
Dataset

Source

Training

Set

Test

Set

Labeling

Method

Feature

Source

Open

Source

2018 [99] DL Ethereum 64% 20% Maian Opcode Y

2019 SoliAudit [60] ML Etherscan 80% 20% Oyente&Remix Opcode N

2019 [69] ML Etherscan 80% 20% Mythril&Slither Source Code N

2020 Contractward [106] ML Etherscan 70% 30% Oyente Opcode N

2020 [110] DL Etherscan #N #N #N Opcode N

2020 [46] DL Etherscan #N #N MAIAN Opcode Y

2020 [58] DL Etherscan 70% 30% Mathx Source Code N

2020 TMP/DR-GCN [121] DL Etherscan 20% 80% Manually Source Code Y

2021 AME [65] DL Etherscan 20% 80% Manually Source Code Y

2021 Eth2Vec [11] DL Etherscan 90% 10% #N Opcode Y

2021 [96] DL Etherscan 60% 70% #N Opcode N

2021 [66] DL Ethereum 80% 20% Oyente&Mythril&Dedaub Opcode N

2021 ESCORT [111] DL Etherscan 70% 30% Slither&Ethainter Source Code N

2021 [33] ML Etherscan #N #N Manually Transaction N

2021 [9] ML Etherscan #N #N Etherscan Transaction N

2022 xFuzz [76] ML Etherscan 70% 30% Solhint&Slither&Securify Opcode&Source Code N

a
#N denotes that there is no explicit explanation in the paper.

problem of the vulnerability detection functionality of sGuard. Speciically, there are many contracts

whose loops require a large number of unrollings.

3.1.2 Limitations of SCRepair.

SCRepair [115] is a search-based and gas-aware vulnerability repair tool that adopts a genetic search tech-

nique to generate and select mutants that can be considered as candidate patches. SCRepair relies on existing

vulnerability detection tools (Slither, Oyente) to detect and locate vulnerabilities, and these existing tools are

also used as part of the criteria to evaluate the correctness and quality of the patch candidates. If all test cases

pass and no vulnerabilities are detected by existing tools, the contract is considered repaired. However, according

to the experimental results presented in SCRepair [115], the limitations of SCRepair are summarized as follows.

· SCR-LIM1. In terms of vulnerability detection and localization, Slither and Oyente are integrated by

SCRepair to detect and locate the code that needs to be repaired. However, existing vulnerability detection

tools have inconsistent results and a large number of false positives, as shown in many works [32] [45] [89].

The false positives and false negatives of existing tools and their inconsistencies afect the correctness of

vulnerability repair.

· SCR-LIM2. In terms of repair rules, the goal of the mutation of SCRepair is only to pass test cases and

ensure that no targeted vulnerability is found by one of the detection tools, so that the correctness of the

generated patches must be veriied manually. However, compared to ixed templates, the mutations of

SCRepair may be incomprehensible, so more manual efort is required to verify the correctness.

· SCR-LIM3. In terms of eiciency, SCRepair consumes a lot of time and memory during the repair process.

As shown in the experimental results of SCRepair [115], in their dataset that contains 20 contracts, 5 (25%)

contracts are not repaired successfully due to out of memory error, and the average time consumption of

17 (68%) repaired contracts is 25 minutes. During the repair process of SCRepair, the execution time of the

test case consumes the most computational resources, and the time budget of the genetic algorithm is at

least one hour.
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3.2 Summary of Limitations of Existing ML-based vulnerability detection works

Considering the limitations of existing vulnerability repair tools as mentioned above, we think machine learning

technique can guide existing repair tools to be more advanced, especially with respect to performance. However,

we ind that although there are many existing ML-based vulnerability detection works on smart contracts, none

of them have been used in existing vulnerability repair works. Hence, we follow the latest survey paper [97] to

research existing ML-based vulnerability detection works as shown in Table 3. We summarize three inherent

methodological limitations that hinder ML-based works from guiding repair works as follows.

· ML-LIM1. The labeling methods of existing works lack of manual conirmation process, which results in a

large amount of benign code may be labeled as vulnerable, and is harmful to the supervised learning model.

As shown in Table 3, except for the works [121], [65] and [33], the labeling technique for other existing

works relies only on existing tools (e.g., Slither, Oyente) applying traditional approaches (e.g., static

analysis, symbolic execution). However, many empirical studies [32][89] show that these state-of-the-art

tools have an incredible high false positive rate. Without human review of the results reported by the tool,

the labeling of the data set is unconvincing, and the model is bound to be misled into learning a large

number of false positives. Although the works [121] and [65] label the source code of contracts in a purely

manual way, the labeling method is rather crude (e.g, if the function possesses at least one invocation to

call.value, it is labeled as potentially afected by the REN vulnerability.) In addition, the object of the

manual labeling in the study [33] is transactions of contracts, which is not within the scope of this paper.

· ML-LIM2. The program features as model inputs designed by existing works are insensitive to subtle

diferences between the vulnerable code and the repaired code. As shown in the eighth column of Table 3,

more than half of the works extract merely opcode features, about a quarter extract merely source code

features. However, as reported in [114], continuous vectors extracted from the opcode or source code alone

are not suicient to train high-performance models. Hence, [114] enriches the vectors with additional static

features of the source code. However, the work [114] aims to improve the performance of the fuzzing tool,

so it achieves a high recall (0.95) but very low precision (0.26). Additionally, two works [33] and [9] extract

features from transactions that are not program representations and are therefore outside the scope of this

study.

· ML-LIM3. The training set and the test set in existing work are labeled by the rule-based tools. However,

these tools tend to report ixed code patterns. Therefore, even if the model performs well on the test set, it

may perform poorly on real-world vulnerable contracts. As shown in the ifth and sixth columns of Table 3,

most of the studies divide the labeled dataset, which is labeled by one or more existing rule-based tools,

into the training set and the test set using a certain proportion. Without evaluation based on a publicly

available vulnerability dataset, the efectiveness of the model is unconvincing. In particular, if the model is

not interpretable, it may be negatively afected by the distribution characteristics speciic to a dataset, and

thus learn rules unrelated to vulnerabilities [19].

4 APPROACH OVERVIEW

In this section, we present an overview of our approach as shown in Figure 3, which can be divided into two

phases: the ML-based vulnerability detection phase in ğ 4.1 and the rule-based vulnerability repair phase in

ğ 4.2. According to the limitations mentioned in ğ 3, we present the key challenges of these two phases and

the process to address the corresponding limitations. Besides, we clarify the main diferences and similarities

between sGuard and sGuard+ in ğ 4.3.
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Fig. 3. Approach workflow

4.1 ML-based Vulnerability Detection Phase

According to the limitations of sGuard (SG-LIM1, SG-LIM4) and SCRepair (SCR-LIM1) in ğ 3.1, the key

challenges in vulnerability detection are as follows.

1) How to reduce false positives of existing rule-based vulnerability detection tools?

2) How to improve eiciency while detecting as many vulnerabilities as possible?

To address these two challenges, sGuard+ utilizes the machine learning technique for vulnerability detection

to enhance the efectiveness and eiciency. We start with a feature engineering exercise which considers

both the features (Vul-Fs) that characterize the symptoms of vulnerabilities, and the features (Pre-Fs) that

characterize the methods of vulnerability prevention. Vul-Fs are inspired by the detection rules of state-of-the-art

vulnerability detection tools, and Pre-Fs are designed according to the defensive code of vulnerability, as shown

in [20][30][72][113]. Then, the training set is labeled on the basis of the results of the state-of-the-art tools. Since

existing tools have inconsistent results, the results are manually conirmed to avoid false positives and false

negatives. Unlike the training set, the test set is collected from publicly available vulnerability datasets (PVD)

dataset, as shown in ğ 2.4. In addition, PVD is augmented with the equivalent variants as done in [89] and the

code obfuscations of BiAn [116] (see details as ğ 5.2.1). The efectiveness of machine learning models in the test

set represents the generalizability. Lastly, the tree-based machine learning model is selected for training because

it has interpretability.

As shown in the left part of Figure 3, there are three main steps to get detection models: data collection, feature

engineering, and model training.

First, for the step D1.data collection, the unlabeled real-world contract dataset (URD) provided by the

empirical study [89] is an available standard dataset as part of a reliable benchmark suite. To build the training

set, sGuard+ labels each function in URD based on the detection results of three state-of-the-art detection tools

(two static tools Slither and Securify, and one symbolic execution tool Mythril). These three tools are used in

previous work [29][32][89] for evaluation, which means that these tools are practically efective. Note that, in

order to reduce the false positives and false negatives of three tools, the detection results are conirmed manually

for solving the problems mentioned in the limitation of existing ML-based works (ML-LIM1). We collect existing

publicly available vulnerability datasets shown in ğ 2.4 as the test set, which aims to avoid the limitation of

existing ML-based works (ML-LIM3).

Second, for the step D2.feature engineering, each function of a contract in LRD is characterized to a 39-

dimensional vector by sGuard+. It contains 23-dimensional opcode features and 16-dimensional source code
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features. Speciically, the source code of a contract is compiled to get the opcode of each function, and then the

opcode of each function is embedded by Word2Vec into a 20-dimensional vector. Furthermore, the opcode of

each function is also used to identify 3-dimensional opcodes that are crucial for vulnerabilities to improve the

vulnerability sensitivity. In addition, sGuard+ performs static analysis by Slither, which has the comprehensive

built-in code analysis, to extract 16-dimensional source code features that contain Vul-Fs and Pre-Fs for each

function for breaking though the limitation of existing ML-based works (ML-LIM2).

Third, for the step D3.model training, sGuard+ applies four typical tree-based binary classiication models,

namely Decision Tree (DT), Random Forest (RF), Adaptive Boosting (ABoost), and eXtreme Gradient Boosting

(XGBT), to select the best performing model. Before training the models, sGuard+ adopts a commonly used

oversampling algorithm, namely Borderline-SMOTE [50], to handle the imbalance in the number of vulnerable

and non-vulnerable samples. Borderline-SMOTE improves the efectiveness of oversampling based on the

SMOTE algorithm by only using the minority examples near the borderline to synthesize new samples. Finally,

sGuard+ trains a binary classiication model for each vulnerability type, because a function may have multiple

vulnerabilities. A function will be fed to each of the ive models for testing, and all reported vulnerabilities will

be patched sequentially during the repair phase.

After getting the detection models, as shown at the bottom left of Figure 3, given a new smart contract source

code, the vulnerability detection worklow of sGuard+ can be roughly divided into two steps to get the input

and output of the models. First, to generate the input to the model, sGuard+ extracts the features of the new

contract as in the step D2.feature engineering, and then gets the vectors of feature representation of the functions.

Each vector is composed by a continuous distributed vector of opcode represented by Word2Vec, and a discrete

distributed vector extracted by simple static analysis from the opcode and source code (see details in ğ 5.2.2).

Second, sGuard+ inputs the feature vectors into the models to detect vulnerable functions that should be repaired

in the next phase.

4.2 Rule-based Vulnerability Repair Phase

According to the limitations of sGuard (SG-LIM2, SG-LIM3) and SCRepair (SCR-LIM2, SCR-LIM3) for the

localization and repair of vulnerabilities, the key challenges in this phase are twofold as follows.

1) How to identify the particular lines of code that need to be repaired?

2) How to improve the correctness of the repair rules?

To address the irst challenge, sGuard+ applies an algorithm (see details in Algorithm 1) to localize the particular

code lines that need to be patched according to the repair strategies. To address the second challenge, sGuard+

designs repair rules according to the oicial documentation (e.g. Solidity Documentation [6], SWCRegistry [72],

Openzeppelin [79]) that provide secure remediation strategies and patterns, to guarantee that the patches are

efective and bug-free. Furthermore, to preserve the original business logic of contracts, sGuard+ deines more

precise conditions under which a repair rule can be safely applied and extends new repair rules for cases outside

the scope. Note that patches with minimal code changes are preferred by sGuard+ to reduce gas overhead.

As shown in the right part of Figure 3, there are three main steps to repair vulnerabilities: localization, condition

checking, and application of repair rules.

First, for the step R1.localization, the source mapping provided by Solidity compilers (e.g., solc) is utilized to

ind the line number of vulnerable code. sGuard+ localizes the code that needs to be patched at the function-level

and the statement-level according to diferent patch methods. For function-level localization, the patch code

can be inserted as a modiier of a vulnerable function. For statement-level localization, sGuard+ traverses each

statement in the function to identify the code that needs to be patched.

Second, for the step R2.condition checking, as mentioned in SG-LIM3, the repair rules of sGuard for REN

and IOU are problematic in some cases. To preserve the original business logic of contracts, we set the conditions
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to check if the repair rules can be applied. For the repair rules of REN, the interprocedural call graph (ICG) is

proposed to identify the calling relationship between functions. If there is more than one function with REN

in the same call chain, sGuard+ will add mutex lock modiiers that depend on diferent mutex variables to the

functions (see details in Figure 5 in ğ 6.3). For the repair rules of IOU, sGuard+ checks whether the lvalue of an

assignment expression has side efects and applies diferent repair rules accordingly (see details in ğ 6.3).

Third, for the step R3.repair rules applying, the repair rules are designed to improve those of sGuard (see

details in Figure 4 in ğ 6.2). In general, sGuard+ not only reines the original rules of sGuard for REN and IOU

by considering the precise conditions, but also extends the new repair rules to reduce gas consumption and

repair two new types of vulnerability (UCR and USI). In general, there are three steps to repair a vulnerable

contract. First, sGuard+ takes advantage of the source mapping to map the number of lines to the AST nodes.

Then, the localized AST nodes are modiied by the code transformation of repair rules. Finally, the modiied AST

is converted into a inal source ile of the repaired contract.

4.3 Comparison of sGuard and sGuard+

Both sGuard and sGuard+ are self-contained vulnerability repair tools with built-in vulnerability detection

modules. sGuard employs a static analysis approach based on symbolic execution traces for vulnerability

detection, while sGuard+ uses a machine learning approach based on feature engineering (see details in ğ 5.2).

Therefore, sGuard localizes vulnerabilities by directly mapping symbolic execution traces to source code, whereas

sGuard+ designs a new algorithm to localize the source code that needs to be patched based on the vulnerable

function signatures reported by the models (see details in ğ 6.1). Both sGuard and sGuard+ perform vulnerability

repairs using pre-designed repair rules.

In the vulnerability detection phase, sGuard deines which symbolic execution traces are vulnerable, which is

adopted by sGuard+ as critical vulnerability features. For example, sGuard identiies a TXO vulnerability if

a trace executes an opcode CALL that depends on an opcode ORIGIN. Consequently, we design two-dimensional

features to indicate the presence of CALL and ORIGIN, respectively. However, to enrich the vulnerability features,

we also refer to the detection rules of the state-of-the-art tools in feature engineering process. Although sGuard

theoretically promises the soundness of static analysis, it exhibits poor practical efectiveness and performance

due to the problem of path explosion. In contrast, sGuard+ outperforms sGuard in practice, thanks to its rich

features, but it cannot guarantee theoretical soundness.

In the vulnerability repair phase, sGuard designs repair rules for REN, IOU and TXO, respectively. sGuard+

corrects the rules of sGuard to avoid possible changes to the original business logic and extends new rules to

reduce gas overhead (see details in ğ 6.2). Speciically, for REN, sGuard+ adapts the rule of sGuard according

to the inter-procedural call graph of functions to guarantee the correct semantics, and designs a new rule that

is applied preferentially because of its low gas overhead. For IOU, sGuard+ follows the rule of sGuard for

arithmetic operators (e.g., +, -) but restricts the rule of sGuard for arithmetic assignment operators (e.g., +=, -=)

on expression without sides efects to avoid incorrect repair, and then designs a new rule for expressions with

side efects. For TXO, sGuard+ follows the rule of sGuard without modiication. Additionally, sGuard+ adds

new repair rules for UCR and USI vulnerabilities.

Overall, the main diference between sGuard and sGuard+ lies in their distinct approaches to vulnerability

detection. Additionally, the repair rules of sGuard and sGuard+ are roughly the same, but sGuard+ corrects

and extends the rules of sGuard to improve the correctness and performance.

5 VULNERABILITY DETECTION VIA MACHINE LEARNING

In this section, we elaborate on the vulnerability detection phase by machine learning. To begin with, the detection

rules of three state-of-the-art tools (Slither, Securify, andMythril) are introduced in ğ 5.1, which represent
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Table 4. The detection rules of Slither, Securify andMythril

Tools Mechanism Vul Rules

Slither IR

UCR CALL(_, call()/send()) ∧ Return(���_� ) ≻ ¬ Read(���_� )

USI CALL(_, suicide()/selfdestruct()) ∧ ¬ IsProtected

REN CALL(_, call()) ≻ Write(���_�)

TXO IsCondition ∧ Read(tx.origin) ∧ ¬ Read(msg.sender)

Securify DSL
UCR some call(�_1,� ,_,_) all goto(�_2,� ,_). MayFollow(�_1,�_2) ≻ ¬ MayDepOn(� ,� )

REN some call(�_1,_,_,_) some sstore(�_2,_,_). MustFollow(�_1,�_2)

Mythril SE

IOU ∃�0 ∈ {���} . P(�0 ) ∧ (��1 > ��0 ) or ∃�0 ∈ {���,���} . P(�0 ) ∧ (��1 + ��0 > 223 − 1)

UCR ∃�0 ∈ C, �1 ∈ {����, ������ }, �0 ≻ �1, ∀Retval(�0 ) . P(�1 )

USI ∃�0 ∈ {������������ }, ∀���� . P(�0 ) ∧ (�� .������ == ���� )

REN ∃�0 ∈ C, �1 ∈ {������, �����,������,������2}, �0 ≻ �1 . P(�1 )

TXO ∃�0 ∈ {������ }, �1 ∈ { ����� }, �0 ≻ �1 . P(�1 )

multiple symptoms of vulnerabilities. Then, in ğ 5.2, we introduce three steps of model training: data collection,

feature extraction, and model selection. Furthermore, we evaluated the F1 scores of four tree-based models on

the training and test sets to select the best model.

5.1 The Detection Rules of Existing Tools

The detection rules of Slither, Securify, andMythril are formalized in Table 4. In the following, we present

the details of their approach.

Slither. Slither works by converting contracts into an intermediate representation (IR), namely SlithIR.

The built-in code analysis of Slither contains three parts [38]: ① Read/Write (R/W), which represents the

read / write operator for the variables. ② Protected Functions (PF), which represent that the function is not the

constructor and that the variable msg.sender is not directly used in a comparison. ③ Data Dependency Analysis

(DDA), which contains the data dependency in the function and the date dependency in the entire contract. As

shown in Table 4, Read(��� ) denotes reading variables; Write(��� ) denotes writing variables; ���� denotes global

variables; ���� denotes state variables; ���� denotes a speciic variable; isProtected denotes that the function is

a PF; CALL(_, � ���) denotes calling the built-in function � ��� of Solidity; Return(��� ) denotes the call return

value; IsConditon denotes conditional statements; ≻ denotes the execution order in the control low. In general,

UCR will be reported if the call return value is not read in the control low after the call, because if the return

value is not read then it must not be checked. USI will be reported if the function that calls the built-in function

selfdestruct or suicide does not check the identity of the caller, msg.sender, because anyone may destruct the

contract if there is no authorization mechanism for callers. REN will be reported if there is a call to the built-in

function call followed by a write operation on a global variable, which is the most obvious requirement for REN.

TXO will be reported if a conditional statement reads the variable tx.origin for comparison, but does not read

the variable msg.sender, because tx.origin should not be used for authorization unless it is checked to ensure

that tx.origin and msg.sender are the same address.

Securify. The rules of Securify are speciied in a domain-speciic language (DSL). As shown in Table 4,

MayFollow(�_1,�_2) denotes the instruction (opcode) at label �_2may follow that at label �_1.MustFollow(�_1,�_2)

denotes the instruction (opcode) at label �_2 must follow that at label �_1. MayDepOn(� ,� ) denotes the value of

Y that may depend on the tag� . instr(�,� ,�1, . . . ,��) (e.g., call(�_1,� ,_,_)) denotes operations of the instructions.

Speciically, instr is the name of the instruction, � is the label of the instructions, � is the variable that stores the

result of the instruction (if any), and �1, . . . , �� are the variables given to the instruction as arguments (if any).

The dot in the middle denotes the condition on the left that must hold for some/all instructions on the left. In

general, Securify detects UCR by checking that the CALL instruction is not followed by a GOTO instruction which
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Table 5. The number and the percentage of vulnerable functions in the publicly available vulnerability dataset (PVD).

IOU UCR USI REN TXO Total

121/247 (49%) 67/247 (27%) 10/247 (4%) 31/247 (13%) 18/247 (7%) 247

Table 6. The number of vulnerable functions in the labeled real-world contracts dataset (LRD).

Tool IOU UCR USI REN TXO

Slither (Sl.) - 280/1,025 190/190 382/81,037 194/194

Securify (Se.) - 379/28,807 28 /28 (V2) 373/13,232 10 /10 (V2)

Mythril (My.) 13,825 222/522 285/285 381/40,069 343/3,226

Manually Conirmed Results 7,782 825 54 69 434

a
V2 denotes that the vulnerability type is only supported by the version 2.0 of Securify, which

only detects contracts with the Solidity vision greater than or equal to 0.5.8.
b
The symbol / denotes the minimum sample size with 95% conidence level and 5% conidence

interval on the left, and the number of vulnerabilities reported by the tools on the right.

may depend on the return value. Securify detects REN by checking that there is a CALL instruction that must be

followed by a write operator to the storage variables.

Mythril.Mythril is implemented based on the symbolic execution technique. As shown in Table 4, P(I)

denotes the constraint on the path to instruction � , ��0 and ��1 denote the left and right variables of dyadic

arithmetic operations (e.g., ��0 + ��1), C denotes the instruction set {CALL, DELEGATECALL, STATICCALL,

CALLCODE}, Retval(� ) denotes the return value (True or False) of an instruction � . In brief, IOU will be identiied

by Mythril if a constraint path with arithmetic overlow or underlow can be satisied. UCR will be identiied if

a constraint path to an instruction in {STOP, RETURN} can be satisied regardless of whether the return value of

the instruction in C is true or false, which means that the return value is unchecked. USI will be identiied if a

constraint path to the instruction SELFDESTRUC can be satisied with the address of any of the callers. REN will be

identiied if the stage changes after a message call. TXO will be identiied if a control low decision is inluenced

by the variable tx.origin.

In summary, despite the diferent approaches, these three tools rely on similar features to identify vulnerabilities.

For example, the source code/opcode Vul-Fs of UCR, USI, and TXO are roughly summarized as: ① call the built-

in functions addr.call() or addr.send()/ execute the opcode CALL, ② call the built-in functions suicide() or

selfdestruct()/execute the opcode SELFDESTRUCT, ③ read the variable tx.origin as a condition/execute the

opcode ORIGIN, respectively. Additionally, writing to the storage variable after calling the function addr.call()

or executing the opcode CALL (write-after-call) is a necessary condition for REN. However, write-after-call is not a

suicient condition for REN [113]. There is a Pre-F that uses the mutex lock modiier, which can prevent REN

without failing the condition of write-after-call. Therefore, to reduce false positives and false negatives of existing

tools, sGuard+ extracts features by integrating key Vul-Fs and Pre-Fs.

5.2 Model Training for Vulnerability Detection

In this section, we discuss data collection in ğ 5.2.1 and introduce feature engineering in ğ 5.2.2, followed by

candidate model selection in ğ 5.2.3.

5.2.1 Data Collection. Data Source. Smart-Contract-Benchmark-Suites [89] is a representative dataset contain-

ing three typical categories: unlabeled real-world contracts (UR), contracts with manually injected bugs (MI) and

conirmed vulnerable contracts (CV). Among them, UR provides 45,622 unique unlabeled real-world contracts
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with source code, which are collected from veriied contracts on Etherscan [5] by searching for all smart contract

addresses provided by BigQuery [47]. MI provides labeled contracts from SolidiFI, and CV provides vulnerable

contracts collected from the CVE and SWCRegistry datasets.

Overall, we build the publicly available dataset (PVD) as test set, which contains the vulnerable contracts in

the labeled datasets of CVE, SWCRegistry and SmartBugs. Furthermore, considering that the number of USI (7)

and TXO (2) as shown in Table 2 is insuicient for evaluation, we apply the variant approaches of [89] and the

obfuscation of the code by BiAn [116] to amplify the number and diversity of these two types of vulnerability. In

total, the number of vulnerable functions in PVD is shown in Table 5. In particular, the test set is updated until

January 1, 2022 (the CVE is continuously updated), and duplicate contrasts are removed as in [89].

Besides, we label UR as follows to build the labeled real-world contracts dataset (LRD) as training set. The

contracts in the test set are all excluded from the training set.

Data Labeling. In LRD, each function is labeled based on the results of three state-of-the-art vulnerability

detection tools, namely Slither, Securify, and Mythril. The main reason for choosing these three tools is

twofold. First, the empirical study [32] shows that these three tools perform best in the ive types of vulnerability.

Second, these three tools are the top 3 smart contract audit tools according to the report [49] of a company with

the level of an international managed security service provider (MSSP).

Each function is annotated as vulnerable or non-vulnerable. We do not simply label functions based on votes

from two or more tools as in [114] because we ind that there may be one tool that outperforms the others for a

certain vulnerability type. For example, Mythril reports far more TXO vulnerabilities than the other two tools,

but it also has the most false positives.

Therefore, in order to guarantee the accuracy of labeling, the results of three tools are manually conirmed

by the three authors of this paper, each of whom has more than 3 years of code auditing experience for smart

contracts. The number of detection results of the three tools on UR and the manually conirmed results are shown

in Table 6.

However, we ind that many vulnerable functions reported by a particular tool are clones because the detection

rules of a tool are ixed and unique. Although we obtain reported vulnerabilities from three tools instead of

one to ensure the diversity of vulnerabilities, manual conirmation is then faced with such a large number of

reported results that it is impossible to conirm completely. Therefore, we irst randomly sample the vulnerabilities

reported by each tool, and then manually verify the samples of each tool to obtain as diverse vulnerability code

as possible. Speciically, as shown in Table 6, the results of each tool for each vulnerability type except IOU,

which contains more than 500 samples, are sampled for manual conirmation to obtain a conidence level 95%

and a conidence interval 5% on whether the sample is representative of all results. According to the results in

Table 6, the minimum sample size we need to conirm is 280, 379, 222 and 382, 373, 381 for the UCR and REN

results of Slither, Securify andMythril, respectively, and 343 for the TXO results of Mythril.

In addition,Mythril reports arithmetic overlow vulnerability based on symbolic execution and constraint

solving. Since the static features of IOU are less accurate than symbolic execution or dynamic features, and the

IOU are more common than other vulnerability types, we keep all IOU results of Mythril in order to preserve

as many IOU patterns as possible. However, we ind that if a function �� without IOU calls a built-in hash

function (e.g., keccak256()) or an internal function with IOU, then the function �� will be redundantly reported

as vulnerable. Therefore, we remove redundant functions, and the remaining results are labeled as IOU by default,

although it may not directly result in a loss of funds.

In general, a function is labeled as vulnerable if it is manually conirmed on the detection results of any tool.

The function that is not reported by any of the three tools is labeled non-vulnerable.

Data Processing.We extract the feature vector for each function in the dataset using the method described in

ğ 5.2.2, and obtain a total of 761,415 feature vectors for 45,622 contracts. To avoid bias caused by data duplication

(due to many function clones existing in smart contracts [54]), we remove all repeated feature vectors and inally

ACM Trans. Softw. Eng. Methodol.



20 • Gao et al.

Table 7. Details of 16 source code features

Name Type Description Nature

unprotected_ren bool IsCondition∧Read(X_g) ≻ ¬Write(X_g) ≻ CALL(_,call()) ≻

Write(Y_g)

Negation of Pre-F for REN

has_arithmetic_operator bool has arithmetic operators Vul-F for IOU

dangerous_txorigin bool IsCondition∧Read(X)∧DataDep(X,tx.origin) ∧ ¬

DataDep(tx.origin,msg.sender)

Vul-F for TXO

unchecked_return_value bool CALL(_,call()/send()) ≻ Return(_,X) ≻ ¬(IsCondition∧ Read(X)) Vul-F for UCR

unprotected_suicide bool ¬ IsCondition ≻ CALL(_,suicide()/selfdestruct()) Vul-F for IOU

has_high_level_call bool has an external call to a function of a contract at a certain

address

Vul-F for REN and UCR

has_low_level_call bool has a call to the function

call()/delegatecall()/codecall()

Vul-F for UCR

has_call bool has a call to the function call() Vul-F for REN

has_transfer bool has a call to the function transfer() Pre-F for REN

has_send bool has a call to the function send() Pre-F for REN & Vul-F for UCR

has_internal_call bool has an internal call to a function in the same contract Pre-F for IOU

is_visible bool the visibility of the function is public or external Vul-F for REN and USI

has_condition bool has conditional statements Pre-F for USI

has_modiier bool has custom modiiers Pre-F for REN and USI

has_msg.sender bool read msg.sender variable Pre-F for TXO

has_msg.value bool read msg.value variable Vul-F for IOU

leave 135,283 feature vectors. Among them, only about 2.8% (3,818/135,283) feature vectors are labeled vulnerable.

However, the extreme imbalance of vulnerable and non-vulnerable samples will introduce an undesirable bias

in the model and limit its predictive performance. Therefore, we use an oversampling technique based on the

Borderline-SMOTE algorithm [50] to balance the ratio of vulnerable and non-vulnerable samples in the training

set. Borderline-SMOTE is one of the most popular algorithms for oversampling based on improvements to the

SMOTE algorithm.

5.2.2 Feature Engineering.

In order to convert the code into compact and uniform length of the feature vector while retaining critical

information of the vulnerabilities, we extract 39-dimensional features from each function by Slither. It contains

23-dimensional opcode features and 16 source code features.

Opcode Features : In EVM, each opcode is encoded as one byte, which means up to 256 unique opcodes. In

fact, EVM has 77 valid opcodes if PUSH1 PUSH32 are regarded as PUSH, DUP1 DUP16 as DUP, SWAP1 SWAP16 as SWAP

and LOG0 LOG4 as LOG, as shown in Table 1. Besides, there are some unassigned byte (e.g., 0x21 0x2f, etc.), called

the INVALID opcode, which is not included because it is not actually implemented in the Ethereum client. We

irst use Word2Vec to represent the opcode of each function as a 20-dimensional vector. Then, we extract three

binary features indicating if the opcodes CALL, ORIGIN and SELFDESTRUCT are executed in the function or not,

respectively, which represent the properties strongly associated with the vulnerabilities. For example, as clariied

in ğ 5.1, the detection rules of Securify andMythril for UCR and REN all start by identifying the presence of the

opcode CALL. Furthermore, USI and TXO may be reported byMythril if and only if the code executes the opcode

SELFDESTRUCT and ORIGIN, respectively. Hence, compared with continuous features produced by Word2Vec, discrete

binary features are beneicial for better partitioning feature space and improving the accuracy and eiciency of

machine learning models.

Source code features: Most of the semantic information in the source code will be lost after the smart

contract is compiled into bytecode, which leads to a high false positive rate. Therefore, the source code of
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each function is leveraged to extract 16 features, as shown in Table 7. Each source code feature represents a

binary attribute with boolean values. Features are categorized into two groups based on their correlation with

vulnerabilities: 1) A feature that may lead to a vulnerability when its value is true is referred to as a vulnerability

feature (Vul-F), as the symptoms of the vulnerabilities descirbed in ğ 2.2. 2) A feature that may defend against a

vulnerability when its value is true is referred to as a prevention feature (Pre-F), as the preventative strategies

descirbed in ğ 2.2. Existing work focuses on generalizing patterns related to Vul-Fs, while overlooking the role

of the Pre-Fs. For instance, as shown in our motivation example in Figure 2, all three existing tools (Slither,

Securify and Mythril) report that the repaired contract still contains a REN vulnerability, because the claimed

bonus of the recipient is still updated to true (line 24) after transfer (line 17), which satisies thewrite-after-call rule

as summarized in ğ 5.1. However, all of them overlook the protective efect of the mutex modiier. Accordingly,

we not only enrich the Vul-Fs, but also focus on enriching the Pre-Fs to improve the accuracy of the model,

particularly reducing the model’s false positives.

We introduce the details of these features in Table 7 as follows. Note that, DepData(���1,���2) denotes that

the variable ���1 has a data dependency on ���2, and the other symbols have the same meaning as described

above in the detection rules of Slither. ① unprotected_ren, which is positively correlated with vulnerabilities,

is designed to contain two parts, one (CALL(_,call()) ≻ Write(Y_g)) is a Vul-F about write-after-call, and the other

(IsCondition∧Read(X_g) ≻ ¬Write(X_g)) is the opposite of the Pre-F about mutex lock. For example, as in the

example shown in Figure 2, the modiier nonReentrant_ prevents REN by reading the global variable locked_ to

check that the condition is satisied (line 6) and writing the variable to change its value (line 7) before executing the

call to the function addr.call() (line 23).② has_arithmetic_operator indicates that the function has an arithmetic

operator that may cause IOU. Using safeMath functions [79] instead of arithmetic operators is recommended,

since Solidity with the version lower than 0.5.0 does not check for overlow by default. Therefore, sGuard+

works to replace every arithmetic operator with the corresponding safeMath function. ③ dangerous_txorigin

is designed to identify the conditional statement that reads the variable tx.origin without depending on the

variable msg.sender. This feature can prevent false positives that commonly exist in existing tools in the case

require(tx.origin==msg.sender). ④ unchecked_return_value is designed to identify no conditional statement

to read the call return value. ⑤ unprotected_suicide is designed to identify no conditional statement before

calling the suicide or selfdestruct function. Furthermore, for the remaining features, has_high_level_call,

has_low_level_call, has_call, has_transfer, has_send and has_internal_call represents diferent call types

in Solidity. In addition, the visibility of a function, conditional statements, custom modiiers, and read to

the transaction-related variables (e.g., msg.value and msg.sender) are all signiicant semantic information for

vulnerabilities.

5.2.3 Model Selection.

Model Selection. We choose the tree-based classiication models because they have good interpretability

compared with deep learning models [19]. This interpretability is crucial for this work for two main reasons:

1) We can trust the rationale behind the vulnerability detection model because the decision-making process

(e.g., the paths in a decision tree) of the model can be explicitly observed. This aids in guiding the subsequent

localization and repair phases, ensuring the correctness of the approach. 2) The interpretability of models is

utilized in the numerous iterations of trial-and-error for feature engineering to analyze important features and

discover more useful ones to improve the accuracy of models. In comparative experiments, four major tree-based

binary classiication models, namely Decision Tree (DT), Random Forest (RF), Adaptive Boosting (AdaBoost), and

eXtreme Gradient Boosting (XGBT), are evaluated as candidate models. DT is a supervised learning algorithm

that recursively partitions the feature space of the training set to provide an informative and robust hierarchical

classiication model [71]. RF, AdaBoost, and XGBT belong to the family of ensemble methods that combine

multiple base learners to create more accurate and robust models. Among them, RF builds multiple DTs and
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Table 8. The Precision, Recall and F1 measure of four

models for 10-fold cross-validation on the training set

(LRD).

VUL Model Precision Recall F1

IOU

DT 0.19 0.42 0.26

RF 0.32 0.44 0.36

AdaBoost 0.36 0.38 0.36

XGBT 0.29 0.46 0.36

UCR

DT 0.91 0.98 0.94

RF 0.91 0.99 0.95

AdaBoost 0.91 0.99 0.94

XGBT 0.91 0.99 0.95

USI

DT 0.72 0.85 0.77

RF 0.77 0.90 0.82

AdaBoost 0.70 0.80 0.74

XGBT 0.80 0.90 0.84

REN

DT 0.58 0.75 0.63

RF 0.55 0.90 0.63

AdaBoost 0.65 0.65 0.63

XGBT 0.83 0.90 0.82

TXO

DT 0.88 1.00 0.93

RF 0.90 1.00 0.94

AdaBoost 0.91 0.99 0.95

XGBT 0.90 0.99 0.94

Average

DT 0.66 0.80 0.71

RF 0.69 0.85 0.74

AdaBoost 0.71 0.76 0.72

XGBT 0.75 0.85 0.78

Table 9. The Precision, Recall and F1 measure of four

models on the test set (PVD).

VUL Model Precision Recall F1

IOU

DT 0.49 0.24 0.32

RF 0.51 0.22 0.31

AdaBoost 0.25 0.9 0.39

XGBT 0.51 0.72 0.60

UCR

DT 1.00 0.96 0.98

RF 1.00 0.96 0.98

AdaBoost 1.00 0.96 0.98

XGBT 1.00 0.96 0.98

USI

DT 1.00 0.70 0.82

RF 1.00 0.70 0.82

AdaBoost 1.00 0.70 0.82

XGBT 1.00 0.70 0.82

REN

DT 1.00 0.9 0.95

RF 1.00 0.87 0.93

AdaBoost 1.00 0.9 0.95

XGBT 1.00 0.9 0.95

TXO

DT 1.00 0.94 0.97

RF 1.00 0.94 0.97

AdaBoost 1.00 0.56 0.71

XGBT 1.00 0.94 0.97

Average

DT 0.90 0.75 0.81

RF 0.90 0.74 0.80

AdaBoost 0.85 0.80 0.77

XGBT 0.90 0.84 0.86

aggregates their predictions to make the inal decision to improve accuracy and generalization[16]. AdaBoost

combines multiple weak learners (typically DTs) to create a strong learner, which achieves high accuracy [88].

XGBT is an eicient and scalable implementation of Gradient Boosting similar to AdaBoost [24], which is known

for its speed and performance. Note that, to improve the eiciency of tuning hyperparameters, we utilize random

search [15] to obtain the optimal hyperparameter combination.

Metrics. There are four outcomes that could occur by models: 1) True positives (TP) mean the vulnerable

functions are reported vulnerable correctly; 2) True negatives (TN) mean the functions without vulnerabilities are

reported non-vulnerable correctly; 3) False positives (FP) mean the functions without vulnerabilities are reported

vulnerable incorrectly; 4) False negatives (FN) mean the vulnerability functions are reported non-vulnerable

incorrectly.

The three main metrics used to evaluate the performance of a model are Precision, Recall, and F1, as shown

in Equation 1. Precision indicates the fraction of TPs among all vulnerable cases reported by a model. Recall

indicates the fraction of TPs among all of the labeled vulnerability cases. F1 is a comprehensive evaluation metric

that controls the same importance between precision and recall.

��������� =
��

�� + ��
, ������ =

��

�� + ��
, �1 =

2 ∗ ��������� ∗ ������

������� + ������
(1)

ACM Trans. Softw. Eng. Methodol.



sGuard+: Machine Learning Guided Rule-based Automated Vulnerability Repair on Smart Contracts. • 23

Results Analysis. Table 8 shows the average precision, recall, and F1 scores of the four models in 10-fold cross-

validation on the training set (LRD). The 10-fold cross-validation is repeated 10 times to reduce the randomness

caused by partitioning the dataset. For each vulnerability type, XGBT outperforms the other three models for USI

and REN, since its F1 score is the highest, while the F1 of XGBT is 0.01 (0.95-0.94) lower than the best AdaBoost

model for TXO. The F1 of XGBT is the same as RF and AdaBoost for IOU (0.36) and the same as RF for UCR (0.95),

which shows small diferences between these models. Overall, the XGBT classiier model has the highest F1 score

(0.78) because it has the best precision (0.75) and recall (0.85). In contrast, even though the recall (0.85) of RF is

the best as XGBT, the precision (0.69) of RF is lower than XGBT, and the precision (0.66) of DT and the recall

(0.76) of AdaBoost are the worst.

Table 9 shows the precision, recall, and F1 score of four models in the test set (PVD) , which evaluates the

generalization of four models on real vulnerabilities. The F1 (0.60) of XGBT is the best for IOU, although its F1

score is the same as that of RF and AdaBoost on the training set. It shows that XGBT has the best generalizability.

The diference in the F1 score between XGBT and the other three models is slight for the remaining four types of

vulnerability. The main reason is that the samples of these four vulnerability types in the test set are simpler than

those of the IOU. In general, the F1 (0.86) of XGBT is the best, and the precision (0.90) and the recall (0.84) are

also the best.

Considering that both precision and recall have a signiicant impact on the efectiveness of vulnerability repair,

such as high recall can guarantee that more vulnerabilities are repaired and high precision can avoid afecting

other non-vulnerable functions, we evaluate models mainly based on the F1 measure. Therefore, XGBT is selected

to detect vulnerabilities in sGuard+ because the F1 of XGBT is the best in both the training set and the test set.

6 AUTOMATED VULNERABILITY LOCALIZATION AND REPAIR

In this section, we present the details of the vulnerability localization in ğ 6.1 and the repair rules in ğ 6.2. In

addition, the case study of repair rules is introduced in ğ 6.3 for a detailed explanation.

6.1 Localization

Source mapping generated by the compiler of Solidity provides a mapping from the source code to the nodes in

the AST or bytecode. Since sGuard leverages symbolic traces, which are generated based on a control low graph

(CFG) that is converted from bytecode, to detect vulnerabilities, sGuard uses the mapping from vulnerable opcode

in the symbolic trace to the location of the source code. However, using machine learning models for vulnerability

detection poses a challenge for localization, because models only report the signature of the vulnerable function

and the type of vulnerability, but not the critical vulnerability statement in the function. To address this, we design

an algorithm to locate the speciic number of vulnerable statements. The details are presented in algorithm 1,

which takes a set of instances of vulnerable functions � as input and returns a mapping from the vulnerable

function to the corresponding line number of vulnerable statements. Each � in � contains the type of vulnerability

and a set of statement instances � that are abstracted by Slither based on the control low nodes [92].

We leverage static analysis to identify statements in vulnerable functions that need to be ixed by applying

repair rules. To start with, we check the vulnerability type of the vulnerable function � . Next, we search the

location� that needs to be patched for each vulnerability type as follows.

UCR (Lines 2 to 10): We irst search the statement �� that calls the function addr.send() or addr.call() and

get the corresponding return value � by the function GetLowLevelCallReturnValue (lien 4). Then, we get the set

of statements after �� by the function AfterStatements and iterate through each statement � � in this set (line 6).

Each � � will be judged by the function CheckValue whether the return value � is checked (line 7). If the variable �

is not checked in the next statements, the line number of �� is the place to be modiied (line 10).
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Algorithm 1: Vulnerability localization

Input: Vulnerable Functions �

Output: Mapping From Function To Location�

1 foreach � in � do

2 if � .��� is UCR then

3 foreach �� in � .� do

4 � = GetLowLevelCallReturnValue(�� ,(����,����))

5 � := False

6 foreach � � in AfterStatements(� .� ,�� ) do

7 if CheckValue(� � , � ) then

8 � := True

9 if not � then

10 � (� ) ← �� .����

11 if � .��� is REN then

12 foreach �� in � .� do

13 if HasLowlevelCall(�� ,����) then

14 �� ← �� .����

15 � := storage variables read in condition statements before ��

16 foreach � � in AfterStatements(� .� ,�� ) do

17 �� ←WriteStorageVariable(� � ,� )

18 if �� != ∅ then

19 �� := variables read in statements between �� and � �

20 if �� not in �� then

21 �� ← � � .����

22 � (� ) ← (�� , ��)

23 � (� ) ← � .�����

24 if � .��� is TXO then

25 foreach �� in � .� do

26 � := GetVariableReadInCondition(�� )

27 if tx.origin in � and not DataDependency( msg.sender,� − {�� .������} ) then

28 � (� ) ← �� .����

29 if � .��� is IOU or USI then

30 � (� ) ← � .�����

31 return�

For instance, as shown in Figure 1b, the statement at line 4 calls the function call, while the statements after

line 4 do not check the return value of the function call. Therefore, line 4 is the location that should be patched

by a conditional statement for checking the return value.

REN (Lines 11 to 23): We irst search the statement �� that calls the function addr.call() by the function

HasLowLe- velCall (line 13), then the set of storage variables � that are read in condition statements before ��
will be collected (line 15). The set of statements after �� collected by the function AfterStatements is iterated as � �
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(line 16) for checking the write operator to storage variables that are stored on the blockchain. We search for the

same storage variables �� written by �� and � � by the function WriteStorageVariable (line 17). If �� is not empty,

we will check whether the variables in �� are read by the statements between �� and � � in the same branch of

the program (lines 19 to 20). If not, the line number of �� and � � (�� , ��) is the place to be modiied (line 22). In

addition, the range of line numbers of the function indicates the place where the modiier can be added (line 23).

For example, the REN example shown in Figure 1d displays a typical situation in which a condition state-

ment on line 2 reads a storage variable credit[msg.sender], and the statement (line 4) writes the variable

credit[msg.sender] after the statement calling addr.call() (line 3). In this case, moving the statement at line 4

to the front of the statement at line 3 will satisfy the Conditions-Efects-Interaction mode. REN in this case can

also be defensed by locking as shown in modiier nonReentrant_.

TXO (Lines 24 to 28):We irst collect the variables � read by the conditional statement �� by the function

GetVaria- bleReadInCondition (line 26). If the variable tx.origin in � , we then check if the remaining variables

except tx.origin in� have data dependencies on msg.sender by the function DataDependency (line 27). If not, the

line number of �� is the place to be modiied (line 28).

For example, Figure 1e shows a TXO example. The condition statement at line 2 reads variable tx.origin

and owner that does not depend on msg.sender in the function sendTo. Replacing tx.origin with msg.sender will

defend this TXO.

IOU (Lines 29 to 30): For a vulnerable function with IOU, we locate the range of line numbers of the function,

which contains all unsafe expressions that will be converted by the safe math functions.

For instance, as shown in Figure 1a, if the function sell is reported to have IOU vulnerability, the range of line

numbers for the entire function (lines 1 to 5) will be located and then all arithmetic expressions within the range,

such as the subtraction on line 3 and the multiplication at line 4, will be patched by the safe math functions.

USI (Lines 29 to 30): For a vulnerable function with USI, we locate the range of line numbers of function,

which indicates the place where to add the permission check modiier that ensure only the contract creator is

allowed to destroy the contract.

For instance, as shown in Figure 1c, if the function sendTo is reported to have USI vulnerability, the range of

line numbers for the entire function (lines 1 to 4) will be located, and then the function will be patched by adding

a permission check modiier before the keyword public at line 1.

Overall, since the statement is abstracted based on the control low nodes, which contains the variables reading

and dependency information that can search directly, the time consumption of the algorithm is mainly two layers

traversal of the function statements. In general, the complexity of the vulnerability localization algorithm is

� (�2).

6.2 Repair Rules

The repair rules of sGuard+ are shown in Figure 4. sGuard+ addresses the limitations of the repair rules of

sGuard by considering the interprocedural calls for REN and the side efects of the arithmetic expression for

IOU. Note that the repair rules for new vulnerability types (UCR and USI) and the gas-saving repair rule for REN

are newly introduced by sGuard+. In the following, we present how the rules in Figure 4 are designed.

ChREN-1: For any function � in a smart contract, if there is a function � ′ with REN, add the mutex lock to � ′, and

then we get the repaired function � ′′.

ChREN-2: For any function � with REN, if there are two statements �1 and �2 in � , which satisfy the condition that �1
calls the built-in function call.value() and the immediate next statement �2 writes to the storage variable, switch

the order of �1 and �2.
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� ∈ REN � → � ′ � ′′ = lock (� ′)

� → � ′′
(ChREN-1)

�1 ∈ call �2 ∈ writeStmt �1 → � ′1 �2 → � ′2
�1; . . . ; �2 → � ′2; �

′
1; . . .

(ChREN-2)

�1 → �′1 �2 → �′2 �3 → �′3 opFunc ∈ safeFunc(⊙)

�1 = �2 ⊙ �3 → �′1 = opFunc
(

�′2, �
′
3

) (ChIOU-1)

�1 → �′1 �2 → �′2 opFunc ∈ safeFunc(⊕) �1 ∉ sideEfect

�1 ⊕ �2 → �′1 = opFunc
(

�′1, �
′
2

) (ChIOU-2)

�1 → �′1 �2 → �′2 opFunc ∈ safeFunc(⊕) �1 ∈ sideEfect � ∈ ������

�[�1] ⊕ �2 → ��� = �′1;�[���] = opFunc
(

�[���], �′2

) (ChIOU-3)

� → �′

� → �′ [tx.origin/msg.sender]
(ChTXO)

� ∈ call � → �′

�;→ success = �; require ( success );
(ChUCR)

� ∈ USI � → � ′ � ′′ = check (� ′)

� → � ′′
(ChUSI)

→ denotes syntax exchange; ⊕ denotes arithmetic assignment operators (e.g. +=, -=); ⊙ denotes arithmetic operators (e.g.

+); ... denotes a sequence of program code statements; / denotes the replacement of the preceding variable with the

following variable; safeFunc denotes input a arithmetic operator to get the corresponding safemath function; sideEfect

denotes a set of program code with side efect; call denotes a set of program code for transaction by Call function; send

denotes a set of program code for transaction by Send function; writeStmt denotes a set of program code with write

operations; REN denotes a set of functions with REN vulnerability; USI denotes a set of functions with USI vulnerability;

lok is a map which takes in a function and gets a function with modiier prevented REN vulnerability.

Fig. 4. Repair rules of sGuard+.

(Cyan represents the improved rules based on sGuard. Blue represents the newly expanded rules.)

As shown in [75], sGuard supports the repair rules on REN (no matter intra-function and cross-function), TXO

and IOU. Among them, the repair rule of REN as shown in ChREN-1 is to add a modiier nonReentrant_, which is

a mutual exclusion mechanism by a mutex storage variable lock_, which can prevent the recursive call before the

irst call inishes from having any efect. However, as we mentioned in Section 3.1.1, if function � has an internal

call to function B which uses the same mutex, the call to function A will always be reverted. Therefore, as shown

on the right side of the Figure 2, we design the ICG constructing the internal call relationships between functions

to prevent functions in the same internal call chain from relying on the same mutex.

Moreover, compared to the modiier mutex, the Condition-Efects-Interaction mode [6] means constructing a

nature mutual exclusion in business logic without increasing the amount of code. For instance, as shown in the

simple REN example in Figure 1d, the statements on lines 2, 3 and 4 represent the conditions, interaction and

efects, respectively. The Conditions-Efects-Interaction can be conformed if we move the statement on line 4

before the statement on line 3, and we can ind that the storage variable credit[msg.sender] is a natural mutex

to prevent REN. Therefore, to ix REN with minimal cost, the repair rule ChREN-2 is designed to prevent REN by

moving the statement �2 with Efect to the front of the statement �1 with Interaction.

ACM Trans. Softw. Eng. Methodol.



sGuard+: Machine Learning Guided Rule-based Automated Vulnerability Repair on Smart Contracts. • 27

ChIOU-1: For any function � with IOU, if there are expression �1, �2 and �3 in � , which form an arithmetic statement

� : �1 = �2 ⊙ �3; (e.g., a = b + c;) potentially causing integer overlow or underlow, convert � to a new statement

�′ : �′1 = ������ (�′2, �
′
3) (e.g., a = safeADD(b,c);).

ChIOU-2: For any function � with IOU, if there are expressions �1 and �2 in � , which form an arithmetic statement

� : �1⊕�2; (e.g., a += b;) that causes integer overlow or underlow, convert � to a new statement �′ : �′1 = ������ (�′1, �
′
3)

(e.g., a = safeADD(a,b);) if and only if �1 has no side efects (e.g., �1 is not arr[a+=1]).

ChIOU-3: For any function � with IOU, if there are expression �1 with side efects and �2 in � , which forms an

arithmetic statement � : �[�1] ⊕ �2; (e.g. arr[a+=1] += b;) causing an integer overlow or underlow, add a new

statement ��� = �′1 (e.g. tmp = a+=1;) that assigns �1 to a new temporary variable and then convert � to a new

statement �′ : �[�1] = ������ (�[���], �′3) (e.g., a[temp] = safeADD(a[tmp],b);).

The repair rules of IOU (ChIOU-1 and ChIOU-2) are the same as those ofsGuard, which replaces arithmetic

operators with safemath functions that revert the transaction if IOU occurs. ChIOU-1 and ChIOU-2 show that the

arithmetic operators (e.g., +, -, *, /, etc.) and the compound arithmetic assignment operators (e.g., + =, - +, * =, /=,

etc.) are replaced with the corresponding safemath functions. However, the original semantics will be changed if

the replacement is performed directly on a compound arithmetic assignment operator that contains side efects

in an lvalue. Hence, we design ChIOU-3 to address the side efect of expressions on semantics by introducing the

temporary variable tmp.

ChTXO: For any function � with IOU, if there is a conditional expression � (e.g., require(tx.origin==owner)) reading

the variable tx.origin in � , replace tx.origin with msg.sender, to obtain the repaired expression �′.

For TXO, tx.origin denotes the address of the original initiator of the full call chain of transactions, which

can be exploited by phishing attacks by using the caller’s address as the authentication of its unknown calling

node. In contrast, msg.sender denotes the address of the current caller, which means that there is no intermediate

call node that may deceive the caller. ChTXO shows the same repair rule for TXO as sGuard, which replaces

tx.origin of vulnerable expression with msg.sender.

ChUCR: For any function � with UCR, if there is a expression � (e.g., msg.sender.call.value("1 ether")) in � ,

which invokes a low-level call method but its return value is unchecked, convert the statement e; to a new statement

�1 :success = �; assigning the return value to the variable success, and then add a new conditional statement

�2 :require(success); immediately following �1.

The UCR repair rules check the return value of the expression of the function call by adding the built-in error

handling function require() in Solidity as shown in ChUCR.

ChUSI: For any function � in a smart contract, if there is a function � ′ with USI, add a permission check (e.g.,

require(msg.sender == owner)) on � ′, and then we get the repaired function � ′′.

The repair rule of USI ChUSI is similar to that of ChREN-1, which adds the authentication modiier to vulnerable

functions.

6.3 Case Study

In this section, we show the application of repair rules in some speciic examples to clarify the rationality and

correctness. The purpose of the case study is mainly to show the improvement of sGuard+ over sGuard (the

rules of ChREN-1, ChREN-2, ChIOU-2 and ChIOU-3), so the correct repair rules (the rules of ChIOU-1 and

ChTXO) of sGuard are not redundantly demonstrated through examples. In general, the patch code provided by

the rule-based repair method is ixed, which means that the correctness of the repair depends on the correctness

of the patch code and the rationality of the repair rules. However, after manually auditing the contracts repaired
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1 + contract sGuardPlus {

2 + bool private locked_1;

3 + bool private locked_2;

4 + constructor () internal {

5 + locked_1 = false;

6 + locked_2 = false;

7 + }

8 + modifier nonReentrant_1() {

9 + require(!locked_1);

10 + locked_1 = true;

11 + _;

12 + locked_1 = false;

13 + }

14 + modifier nonReentrant_2() {

15 + require(!locked_2);

16 + locked_2 = true;

17 + _;

18 + locked_2 = false;

19 + }

20 + }

21 - contract Reentrancy_bonus {

22 + contract Reentrancy_bonus is sGuardPlus {

23 - function withdrawReward(address recipient) public {

24 + function withdrawReward(address recipient) nonReentrant_2 public {

25 uint amountToWithdraw = rewardsForA[recipient ];

26 (bool success , ) = recipient.call.value(amountToWithdraw)("");

27 require(success);

28 rewardsForA[recipient] = 0;

29 }

30 - function getFirstWithdrawalBonus(address recipient) public {

31 + function getFirstWithdrawalBonus(address recipient) nonReentrant_1 public {

32 require (! claimedBonus[recipient ]);

33 rewardsForA[recipient] += 100;

34 withdrawReward(recipient);

35 claimedBonus[recipient] = true;

36 }

37 }

Fig. 5. An example of ChREN-1 applied in Figure 2.

Note that the statement in red font is added to make the function withdrawReward has a REN.

by sGuard on PVD, we ind a weak prevention patch code as shown in Figure 5 for REN in implementation, and

two special cases as shown in Figure 5 and Figure 7 that are beyond the scope of the repair rules for REN and

IOU, respectively. Therefore, in order to improve the correctness of the repair rules of sGuard, we amend the

weak patch code and improve the rationality of the repair rules with conditional constraints. Furthermore, we

adopt a variety of repair strategies as shown in Figure 6 based on research about state-of-the-art recommended
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1 function withdraw(uint amount) public {

2 if (credit[msg.sender]>= amount) {

3 - require(msg.sender.call.value(amount)());

4 - credit[msg.sender] -= amount;

5 + credit[msg.sender] -= amount;

6 + require(msg.sender.call.value(amount)());

7 } }

Fig. 6. An example of ChREN-2 applied in Figure 1d.

1 + contract sGuard {

2 + function add_uint8(uint8 a, uint8 b) internal pure returns (uint8) {

3 + uint8 c = a + b;

4 + assert(c >= a);

5 + return c;

6 + } }

7 - contract IOUEample {

8 + contract IOUEample is sGuard {

9 uint8 [] public arr = [1,2,3];

10 uint8 idx = 0;

11 function iou_vul(uint8 amount) public{

12 ...

13 - arr[idx += 1] += amount; // If amount is 10, idx will be 1, and arr will be [1, 12, 3].

14 + arr[idx = add_uint8(idx, 1)] = add_uint8(arr[idx = add_uint8(idx, 1)], amount);

15 + // If amount is 10, idx will be 2, and arr will be [1, 2, 12]. This is inconsistent with the original result.

16 ...

17 } }

(a) The incorrect repair by sGuard for IOU due to side efects of the arithmetic expression.

1 function iou_vul(uint8 amount) public{

2 ...

3 - arr[idx+=1] += amount;

4 + uint tmp = idx += 1;

5 + arr[tmp] = add_uint8(arr[tmp], amount); // If amount is 10, idx will be 1, arr will be [1, 12, 3].

6 ...

7 }

(b) The correct repair according to the repair rule ChIOU-3 for the IOU in Figure 7a.

Fig. 7. An example of ChIOU-3.

remediation and security patches for each considered vulnerability to reduce repair costs and cover more complex

situations.

Repair rule ChREN-1. To show the application of ChREN-1, we slightly modify the example shown in

Figure 2 to move the statement in line 14 after line 16 so that the function withdrawReward is also REN. Figure 5

shows the example of ChREN-1 applied in a vulnerability case in which a REN function getFirstWithdrawalBonus

has an internal-call to another REN function withdrawReward in the same contract Reentrancy_bonus. In this case,

adding the same modiier nonReentrant_ for two REN functions by sGuard is incorrect for the same reason as

explained in ğ 3.1.1.
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Therefore, according to ChREN-1, we irst construct the ICG of functions in this contract. Then we check the

relationship of all REN functions on the ICG. The diferent modiier, such as nonReentrant_1 and nonReentrant_2,

will be added to the REN functions if there is a linear internal-call between them and the same modiier will be

added if there is not inter-procedural call between them. Note that we only report an alarm if there is a ring of

inter-procedural calls between REN functions because it cannot be repaired unless the program logic is adjusted.

Moreover, in the implementation, we change the visibility of variables treated as mutexes such as lock_1 and

lock_2 from internal to private to avoid introducing new vulnerabilities.

Repair rule ChREN-2. For REN, the optimal repair method is to satisfy the Conditions-Efects-Interaction

mode instead of using a mutex [30] which has potential dangers such as deadlock. Hence, we design the repair

rule ChREN-2 to identify the conditions that satisfy the mode and perform code transformations. Figure 6 shows

an example of ChREN-2 applied in Figure 1d.

For Figure 1d, the statement if in line 2 is a condition, the transaction statement in line 3 is an interaction, and

the arithmetic assignment statement in line 4 is an efect. According to ChREN-2, irst, the interaction in line 3 is

�1, and we will ind the efective statement �2 in line 4 which writes a storage variable credit[msg.sender] read

by conditional statement in the same conditional branch with �2. Then, we will check whether the variables read

or write by the statements between �1 and �2 contain credit[msg.sender]. Finally, if it does not contain, we will

move the statement that is an efect before the statement that is an interaction, as shown in Figure 6.

Repair rule ChIOU-3. The conversion of the IOU repair rules provided by sGuard will change the semantics

of the code if the left expression of an arithmetic assignment statement has side efects. As shown in Figure 7a,

the statement on line 13 will be repaired by sGuard to the statement on line 14, which is slightly diferent from

the original semantic because an extra 1 is added to the variable idx.

Therefore, ChIOU-2 requires the left expression of the statement without side efects and ChIOU-3 is designed

to avoid repeated arithmetic assignment operations by introducing a temporary variable tmp. As shown in

Figure 7b, irst, we assign the expression idx += 1 with side efects to a temporary variable tmp. The statement

tmp = idx += 1 is added. Then, the original expression idx += 1 is replaced by tmp and the original statement is

converted to arr[tmp] += 1;. Finally, the repair rule ChIOU-2 is applied in the statements tmp = idx += 1 and

arr[tmp] += 1; as shown in lines 4 and 5, respectively.

7 EVALUATION

To evaluate the efectiveness and eiciency of sGuard+, we construct extensive experiments to answer the

following research questions (RQs):

RQ1: How efective is sGuard+, when compared with state-of-the-art vulnerability repair tools?

• RQ1.1: Does the repaired contract change the original business logic of the contract?

• RQ1.2: What is the vulnerability repair capability of sGuard+?

RQ2: How efective is each key step of sGuard+, namely vulnerability detection, localization and repair?

• RQ2.1: How accurate is the XGBT model of sGuard+, when compared with state-of-the-art tools?

• RQ2.2: Do the XGBT model of sGuard+ reduce false positives, and are the Pre-Fs helpful?

• RQ2.3: Can the localization algorithm ind where the true positive vulnerability should be ixed?

• RQ2.4: Do the repair rules of sGuard+ ensure that the transformed code is syntactically correct?

RQ3: How eicient is sGuard+ and how much gas overhead of the patches is introduced by sGuard+?

• RQ3.1: What is the time and memory performance of sGuard+?

• RQ3.2: Does sGuard+ reduce the gas overhead compared to sGuard?

We irst compare the repair capability and correctness of sGuard+, sGuard and SCRepair in RQ1 by repro-

ducing the vulnerabilities exploiting transactions and historical transactions for regression testing on repaired
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Table 10. Datasets for tool evaluation.

Dataset Labeled Smart Contracts Vulnerable Functions Research Questions

PVD Yes 234 247 All

SCRD No 17 # All except RQ2.2

PVD-R Yes 234 0 RQ2.2

a
# denotes that the vulnerable functions are not publicly conirmed waiting to be

detected by tools.

contracts. Then, since the repair correctness of sGuard+ is afected by three key steps: 1) ML-based vulnerability

detection; 2) vulnerability localization; 3) code transformation to apply repair rules, we separately evaluate the

efectiveness of each step in RQ2. Finally, in RQ3, the eiciency of three tools (SCRepair, sGuard and sGuard+)

is evaluated to illustrate the computing resource consumption of repair and the gas overhead introduced by

patches.

7.1 Experiment Setup

Baseline Tools. In evaluation, sGuard is a main baseline tool because sGuard+ is an improvement over sGuard

in our study. Furthermore, as a source-code-level repair tool, SCRepair is also included for comparison with

sGuard+. Note that the source code of SCRepair cannot be executed successfully (also mentioned in paper

[101]) due to the lack of critical dependency components, and we have to reuse their experimental results for

comparison. The bytecode-level repair tools are excluded because they are inevitably more prone to alter the

original code semantics due to the high repair diiculty, resulting in poor correctness compared to source-code-

level tools. To substantiate this claim, we evaluate the correctness of ELYSIUM, which outperforms existing

bytecode-level tools, by conducting the experiment related to RQ1.1. Subsequently, we ind that 92% the historical

transactions failed after the repair, and even some transactions that cannot be reproduced locally before repairing

are executed successfully (see open-sourced details in [8]). However, undeniably, bytecode-level repair holds

signiicant importance for contracts without available source code.

Besides, in order to evaluate the efectiveness of the XGBT of sGuard+ individually, we select three state-of-the-

art nonML-based tools (Mythril, Slither and Securify) and two state-of-the-art ML-based tools (TMP/DR-GCN

and Eth2Vec) as baseline tools. First, the advanced nature of these three non-ML-based tools is obvious as

mentioned in ğ 5.2.1, so they are used not only for data labeling but also as baseline tools. Second, as shown in

the summary of existing ML-based works in Table 3 of ğ 3.2, there are ive open-source works, namely [99], [46],

TMP/DR-GCN [121], AME [65], and Eth2Vec [12]. However, the granularity of vulnerability detection in [99]

and [46] is a contract rather than a function, and the work [99] does not classify a speciic vulnerability type.

Additionally, the works [46] and AME [65] do not open-source the code for data pre-processing [77]. We try to

reproduce the code according to the paper [65], but we ind that some of the super-parameters of the model (e.g.,

dimensions of model inputs and outputs) are not provided in the paper, making it impossible for us to reconstruct

the model architecture for feature generation. Therefore, only the work TMP/DR-GCN [121] and Eth2Vec [12]

can be used as a baseline tool. Note that TMP/DR-GCN [121] proposes two models: TMP and DR-GCN. Although

TMP outperforms DR-GCN in [121], we evaluate both of them in the experiment.

Datasets for Tool Evaluation. As shown in Table 10, we use three datasets to evaluate sGuard+ comparing

with the state-of-the-art tools: 1) The publicly available vulnerability dataset (PVD), as mentioned in ğ 5.2.1,

which contains 234 unique contract source code iles that are labeled with 247 vulnerable functions. 2) The dataset

of SCRepair (SCRD), which contains 17 contracts from real-world projects. 3) The repaired PVD (PVD-R), which

contains the repaired contracts that are manually modiied and conirmed according to the public remediation

cases provided by SWC.

ACM Trans. Softw. Eng. Methodol.



32 • Gao et al.

Table 11. Transactions for regression testing (RT).

Tool
Repaired Contracts

(PVD and SCRD)

Historical Transactions

(Top 350)

Successfully Reproduced Transactions

On The Local Net

Failed Transactions In RT

�� ��

sGuard 64 7,982 4,206 (53%) 1 420

sGuard+ 176 16,755 9,109 (54%) 156 0

a
Note that sGuard and sGuard+ ix 3 and 5 kinds of vulnerabilities, respectively.

These three datasets communicate diferent perspectives. First, the vulnerabilities in PVD are conirmed by

oicial organizations [105] [27], which represents the ground truth for each vulnerability type. Hence, PVD is an

essential benchmark for evaluating not only the efectiveness of vulnerability detection but also the correctness

of vulnerability repair. Second, to compare with SCRepair, we evaluate the efectiveness of sGuard+ in SCRD.

Diferent from PVD, the vulnerabilities in SCRD are unconirmed, so it is necessary to rely on existing tools for

detecting vulnerabilities and performing manual conirmation. Last, to answer the RQ2.2, which contains the

evaluation of the ability of tools to recognize the vulnerability prevention code, we manually construct PVD-R

because the number and location of vulnerabilities as well as the corresponding remediation are explicit on PVD.

Experimental Environment. sGuard+ is implemented based on Python v3.8.2 and Node.js v16.14.2. The

compiler of smart contract is required to be installed locally. All experiments are conducted on an Ubuntu 18.04

LTS machine equipped with an Intel(R) Xeon(R) Gold 6226 CPU @ 2.70 GHz and 187 GB of memory.

7.2 RQ1: How efective is sGuard+, when compared with state-of-the-art vulnerability repair tools?

To answer the RQ1, we evaluate the efectiveness of sGuard+ by comparing it with sGuard and SCRepair in

PVD and SCRD. To begin with, we verify the repair correctness of sGuard+ and sGuard on PVD and SCRD

by reproducing the vulnerability exploiting transactions and historical transactions. The repair correctness of

SCRepair is not veriied using the same approach because SCRepair cannot be executed so that the information

of the repaired contracts is unavailable. Then, we show the repair results of sGuard+ and sGuard on PVD

for each type of vulnerability, which can truly and accurately evaluate the efectiveness of tools because PVD

represents the ground truth of vulnerabilities. Finally, we show the repair results of sGuard+, sGuard, and

SCRepair on SCRD for each vulnerability type, which can evaluate the efectiveness of tools on real-world and

complicated contracts in SCRD. Note that we reuse the original experiment results of SCRepair on SRCD from

the study in [115].

RQ1.1: Does the repaired contract change the original business logic of the contract?

Correctness Validation. Given a transaction �� exploiting a vulnerability �� of a vulnerable contract �� , and

a set of benign history transactions �� of �� , �� is considered to be repaired correctly if the repaired contract ��

can fail �� and pass all �� .

Failing the �� means that the original vulnerable functions cannot be exploited, and passing all the �� implies

that the original business logic of contracts is not broken. In our evaluation, we irst exploit vulnerabilities by a

sequence of deliberately crafted transactions. Then we reproduce these transactions on the repaired contracts to

check whether these vulnerabilities are successfully defended. Moreover, we perform regression testing (RT) to

check whether the original business logic is normal. The available historical transactions are collected for each

contract, and then they are reproduced on the original and repaired contracts, respectively, to check whether

they will be executed successfully as before the repair.

We use the Trule framework [25] to deploy contracts, and claw the top 350 historical transactions for each

contract as test cases for RT from Etherscan so that the huge number of similar transactions can be restricted

to reduce unnecessary efort. However, due to the diference between the Ethereum network and the local
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Table 12. The correct repair results for each vulnerability type on PVD.

Dataset Vulnerability Types
sGuard

Correctly Repair / Ground Truth

sGuard+

Correctly Repair / Ground Truth

PVD

IOU 25/121 (21%) 85/121 (70%)

UCR - 64/67 (96%)

USI - 7/10 (70%)

REN 9/31 (29%) 28/31 (90%)

TXO 17/18 (94%) 17/18 (94%)

Total 51/170 (30%) 199/247 (81%)

a
- denotes the vulnerability type unsupported by the tool.

b
Since SCRepair cannot be executed successfully, its results on PVD are not available.

Table 13. The correct repair results for each vulnerability type on SCRD.

Dataset Vulnerability Types
SCRepair

Correctly Repair/Detect

sGuard

Correctly Repair/Detect

sGuard+

Correctly Repair/Detect
Total

SCRD

IOU 0/12 4/5 13/13 15/24

UCR 18/28 - 30/30 30/30

USI - - 0/0 0/0

REN 1/1 1/1 0/0 1/1

TXO - 0/0 0/0 0/0

Total 19/41 5/6 43/43 46/55
a
- denotes the vulnerability type unsupported by the tool.

network (e.g., the block number, timestamps, and the addresses of external contracts called by transactions),

not all historical transactions can be reproduced successfully, which is also mentioned in [75] [115] [101]. As

shown in Table 11, the historical transactions of sGuard are diferent from those of sGuard+ because sGuard

only repairs three types of vulnerabilities in PVD and SCRD. The number of contracts repaired by each tool is

shown in the second column. Moreover, the third column shows the number of historical transactions and the

fourth column shows the number of these transactions reproduced successfully on the original contracts. We use

successfully reproduced transactions as test cases on repaired contracts for RT.

As shown in the last column of Table 11, there are a total of 421 (10%) transactions that failed to execute in

contracts repaired by sGuard and 156 (2%) transactions that failed to execute in contracts repaired by sGuard+.

Among them, we distinguish two types of transactions: �� (exploitation of vulnerabilities transaction) and ��
(benign history transaction). In terms of vulnerability prevention, contracts repaired by sGuard correctly defend

against 1 �� with IOU, and contracts repaired by sGuard+ correctly defend against 141 and 15 �� with UCR

and IOU, respectively. In terms of impact on the original business logic of the contract, there are 420 �� failures

to execute in contracts repaired by sGuard, while contracts repaired by sGuard+ pass all �� . Among these

420 �� failed to execute, 408 �� failed because there are 6 contracts that fail to compile due to unreliable code

transformation implementation (see details in RQ2), 11 �� failed due to out-of-gas, and 1 �� failed because the

patch code changes the original business logic as LIM3 of sGuard in ğ 3.1.1. Overall, sGuard+ defends against

155 (156-1) more �� than sGuard without changing the original business logic.

RQ1.2: What is the vulnerability repair capability of sGuard+?

Results on PVD. Table 12 shows the correct repair results for each vulnerability type on PVD by sGuard and

sGuard+. A repair is considered correct when the patched function is one of the labeled vulnerable functions on

PVD, and it is conirmed by correctness validation. Each row of Table 12 represents a vulnerability type. Each cell

represents the number of vulnerabilities that are repaired correctly by the tool and the number of vulnerabilities
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1 contract Ownable {

2 ...

3 function Ownable () {

4 owner = msg.sender ;}

5 modifier onlyOwner () {

6 require(msg.sender == owner);

7 _;}

8 ...

9 }

10 contract Issuer is Ownable {

11 ...

12 function Issuer(address _owner , address _allower , StandardToken _token) {

13 ...

14 token = _token ;}

15 function issue(address benefactor , uint amount) onlyOwner {

16 if(issued[benefactor ]) throw;

17 token.transferFrom(allower , benefactor , amount);

18 issued[benefactor] = true;

19 issuedCount += amount ;}

20 }

Fig. 8. The Banana Coin Solidity code at 0xD113244B9049943D4bc6fEf3048d24EDf92dd788, which is an FN of REN by

sGuard+.

marked on PVD. Compared to sGuard, the repair rate of IOU and REN of sGuard+ increased by 49 pp (from 21%

to 70%) and 61 pp (from 29% to 90%), respectively. Furthermore, sGuard+ supports more types of vulnerabilities

than sGuard such as UCR and USI. Overall, the vulnerability repair rate of sGuard+ on PVD increased by 51 pp

(from 30% to 81%) over sGuard.

Results on SCRD. Table 13 shows the correct repair results for each contract on SCRD by SCRepair, sGuard

and sGuard+. Each cell represents the number of vulnerable functions and how many of them are correctly

repaired by the tool for each vulnerability type. Since SRCD contains 17 contracts that are not publicly conirmed,

the ground truth of vulnerabilities in these contracts is not available, which is diferent from PVD. Nevertheless,

we count the number of vulnerabilities for each vulnerability type detected correctly by each tool, and manually

conirm the correctness of the repair.

In detail, the three tools have not discovered any USI and TXO vulnerabilities. For IOU, there are 12 vulnerable

functions reported by Oyente, while none of them are correctly repaired by SCRepair according their experiment

results in [115]. sGuard reports 5 IOUs, 4 of which are correctly repaired. sGuard+ detects 13 vulnerable functions

and repairs all of them correctly. For UCR, SCRepair and sGuard+ correctly repair 18 and 30 vulnerable functions,

respectively. For REN, although SCRepair shows that it correctly repaired 3 REN in its experiment results, we

ind that 2 of them are FPs. SCRepair and sGuard correctly detect and repair 1 REN missed by sGuard+. As

shown in Figure 8, the main reason why the REN of the function issue can be exploited is that the protection of

the modiier onlyOwner is invalid, which is also known as Taint for Owner Vulnerability [55]. Hence, it is ignored

by sGuard+ because it has a defensive feature about the modiier. In general, the vulnerability repair rate of

sGuard+ on SCRD increased by 44 pp (from 19/55 to 43/55) over SCRepair and 69 pp (from 5/55 to 43/55) over

sGuard.
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Table 14. The efect comparison of XGBT model and four nonML-based tools (Slither, Securify, Mythril and sGuard) on

PVD.

Slither Securify Mythril sGuard XGBT of sGuard+

P R F1 P R F1 P R F1 P R F1 P R F1

IOU - - - - - - 0.50 0.36 0.42 0.21 0.42 0.28 0.51 0.72 0.60

UCR 1.00 0.96 0.98 1.00 0.95 0.98 0.89 0.76 0.82 - - - 1.00 0.96 0.98

USI 0.91 1.00 0.95 - - - 1.00 0.80 0.89 - - - 1.00 0.70 0.82

REN 0.81 0.97 0.88 1.00 0.94 0.97 0.45 0.94 0.61 0.45 0.32 0.38 1.00 0.90 0.95

TXO 1.00 0.72 0.84 - - - 1.00 0.94 0.97 1.00 0.94 0.97 1.00 0.94 0.97

a
- denotes the vulnerability type unsupported by the tool.

b
The highest numbers are marked in bold.

Table 15. The efect comparison of XGBT model and ML-based tools (TMP/DR-GCN and Eth2Vec) on PVD.

TMP/DR-GCN TMP/DR-GCN + LRD Eth2Vec Eth2Vec + LRD XGBT of sGuard+

P R F1 P R F1 P R F1 P R F1 P R F1

IOU - - - - - - 0.09 0.30 0.14 # # # 0.51 0.72 0.60

UCR - - - - - - - - - - - - 1.00 0.96 0.98

USI - - - - - - - - - - - - 1.00 0.70 0.82

REN 0.91/0.95 0.32/0.67 0.48/0.78 1.00/1.00 0.48/0.73 0.65/0.85 0.00 0.00 0.00 # # # 1.00 0.90 0.95

TXO - - - - - - - - - - - - 1.00 0.94 0.97

a
- denotes the vulnerability type unsupported by the tool.

b
The highest numbers are marked in bold.

c
# denotes the result that cannot be obtained because the model failed to retrain on the training set LRD.

d
Note that TMP/DR-GCN [121] proposes two models, namely TMP and DR-GCN, which are evaluated separately.

Answer to RQ1: sGuard+ performs best in evaluating the efectiveness among vulnerability repair tools.

Overall, the vulnerability repair rate of sGuard+ increased by 51 pp over sGuard on PVD, and 44 pp over

SCRepair on SCRD. Additionally, sGuard+ has no impact on the original business logic in the regression

testing, while sGuard fails 420 benign test cases.

7.3 RQ2: How efective is each key step of sGuard+, namely vulnerability detection, localization, and

repair?

To answer the RQ2, we irst evaluate the precision, recall and F1 score of the machine learning models (XGBT)

of sGuard+ in PVD by comparing them with four nonML-based state-of-the-art vulnerability detection tools

(Slither, Securify,Mythril and sGuard) and two ML-based tools (TMP/DR-GCN and Eth2Vec). Second, to

evaluate the efectiveness in identifying the vulnerability prevention code, we manually construct the repaired

PVD (PVD-R) that contains the repaired contracts that are manually conirmed according to the public remediation

cases provided by SWC. The FPs of existing tools, which are caused by ignoring vulnerability prevention code,

can be revealed by PVD-R. Then, to further evaluate the efectiveness of localization that determines where to

repair, we count the number of incorrect patch locations for sGuard and sGuard+ based on the vulnerable

functions reported correctly. Finally, based on the correct repair localization, we evaluate the efectiveness of the

repair rules, which represents the correctness of code transformation.

RQ2.1: How accurate is the XGBT model of sGuard+, when compared with state-of-the-art tools?

Results of XGBT. Table 14 shows the comparison of XGBT of sGuard+ and four state-of-the-art nonML-based

tools (Slither, Securify,Mythril and sGuard) on PVD. XGBT’s F1 scores perform the best among the four
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Table 16. The false positives due to ignoring vulnerability defense methods on PVD-R.

Vulnerability Types Slither Securify Mythril sGuard TMP/DR-GCN TMP/DR-GCN + LRD Eth2Vec Eth2Vec + LRD XGBT of sGuard+

IOU - - 1/121 0/121+91 - - 19/121 # 0/121

UCR 0/67 0/67 0/67 - - - - - 0/67

USI 2/10 - 0/10 - - - - - 0/10

REN 30/31 27/31 29/31 10/31 (14/21)/31 (3/22)/31 0/31 # 0/31

TXO 0/18 - 0/18 0/18 - - - - 0/18

Total 32/126 27/98 30/247 10/170+91 (14/21)/31 (3/22)/31 19/152 # 0/247

a
- denotes the vulnerability type unsupported by the tool.

b
# denotes the result cannot be obtained because the tool failed to execute.

c
Note that TMP/DR-GCN [121] proposes two models, namely TMP and DR-GCN, which are evaluated separately.

tools, except for USI and REN. In particular, for IOU, XGBT has the best F1 score (0.60), and its recall (0.72) is

much higher than other tools. Although the precision (0.51) is not as high as other vulnerability types, more FPs

do not afect the efectiveness of the repair but increase the gas overhead. For UCR and TXO, XGBT has the same

best F1 score (0.98, 0.97) as the other tools. For REN, the diferences between the F1 score (0.95) of XGBT and the

best (0.97) are slight (0.02). For USI, although the F1 score of Slither is the best, its precision (0.91) is the lowest,

indicating that it generates many false positives. Mythril has better recall (0.81) than XGBT (0.70), but requires

enormous time for detection. XGBT achieves the best precision (1.00), but its recall is lower than the other tools.

Table 15 shows the comparison of the XGBT of sGuard+ and two state-of-the-art ML-based tools (TMP/DR-

GCN and Eth2Vec). We separately retrain the models on the dataset from previous work and the training set

LRD from this paper. Subsequently, we evaluate the efectiveness of the models on our test set PVD. Note that,

due to Eth2Vec’s inability to handle massive contracts in LRD, we are unable to obtain the retrained model on

LRD and the corresponding evaluation results. Additionally, we ind that the F1 score of DR-GCN (0.78) is higher

than TMP (0.48) on PVD, although TMP outperforms DR-GCN in [121], which indicates that DR-GCN has better

generalization. In general, XGBT of sGuard+ outperforms other tools on every type of vulnerability, and our tool

supports a wider range of vulnerability types. In particular, the TMP/DR-GCN trained on LRD outperforms the

TMP/DR-GCN trained on the original dataset both in precision and recall, indicating that our manually labeled

dataset is of higher quality than the dataset of TMP/DR-GCN.

RQ2.2: Do the XGBT model of sGuard+ reduce false positives, and are the Pre-Fs helpful?

Results of FPs. Table 16 shows the evaluation results of FPs reported by four rule-based tools, two ML-

based tools and sGuard+ on PVD-R. Each cell represents the number of FPs for functions where the original

vulnerability is repaired on PVD-R. Moreover, we ind that sGuard has 91 FPs of IOU for the SafeMath functions

in the patch code. The reason is that sGuard uses a loose deinition of IOU symbolic traces without any checks

about preventive conditions.Mythril also reports an FP of IOU since the function has an array out of bounds

problem, which is out of the scope of IOU to repair. For REN, the number of FP reported by the four rule-based

models on PVD-R is the same as the number of TPs on PVD, which means that all four tools ignore the preventive

methods for REN, especially the mutex method. There are no FPs for UCR, USI and TXO because the repair

strategy makes the critical features of vulnerability disappear, such as the repair strategy for TXO replacing

tx.origin with msg.sender.

For ML-based tools, irstly, although DR-GCN has a higher recall rate (0.67-0.32) than TMP on PVD as shown

in Table 15, DR-GCN has more FPs (21-14) than TMP on PVD-R as shown in Table 16, which indicates that TMP

is sensitive to minor changes in the code and therefore loses generalization, whereas DR-GCN is the opposite

of TMP. The TMP trained on LRD has fewer FPs (3-14) compared to the TMP trained on the original dataset,

further emphasizing the importance of reducing false positive labels through manual data conirmation. Secondly,

Eth2Vec has the highest number of FPs for IOU, and although it does not have FPs for REN, this could be due to
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Table 17. Ablation experiment of vulnerability prevention features (Pre-Fs).

Dataset Vulnerability Features P R F1 TP FP TN FN

Without Pre_Fs 0.46 0.74 0.56 89 106 1,339 32
IOU

With Pre_Fs 0.51 0.72 0.60 87 82 1,363 34

Without Pre_Fs 1 0.96 0.98 64 0 310 3
UCR

With Pre_Fs 1 0.96 0.98 64 0 310 3

Without Pre_Fs 1 0.9 0.95 9 0 85 1
USI

With Pre_Fs 1 0.7 0.82 7 0 85 3

Without Pre_Fs 0.96 0.87 0.92 27 1 138 4
REN

With Pre_Fs 1 0.9 0.95 28 0 139 3

Without Pre_Fs 1 0.44 0.62 8 0 25 10

PVD

TXO
With Pre_Fs 1 0.94 0.97 17 0 25 1

Without Pre_Fs - - - - 39 1,481 -
IOU

With Pre_Fs - - - - 36 1,484 -

Without Pre_Fs - - - - 3 376 -
UCR

With Pre_Fs - - - - 0 379 -

Without Pre_Fs - - - - 3 90 -
USI

With Pre_Fs - - - - 0 93 -

Without Pre_Fs - - - - 24 138 -
REN

With Pre_Fs - - - - 0 162 -

Without Pre_Fs - - - - 1 42 -

PVD-R

TXO
With Pre_Fs - - - - 0 43 -

a
- denotes that the metrics cannot be computed because PVD-R contains only non-vulnerable

functions.

its lack of generalization since it also does not have TPs as shown in Table 15. Note that, as mentioned in RQ2.1,

we cannot obtain its evaluation results on PVD-R because Eth2Vec cannot train on LRD. Overall , sGuard+ has

no FPs on PVD-R since the Pre-Fs are designed to reduce FPs.

Results of Ablation Experiment. As shown in Table 17, to evaluate the role of Pre-Fs in reducing FPs, we

conduct ablation experiments that compared the efectiveness of models with and without Pre-Fs on PVD and

PVD-R. As shown in the FP column of Table 17, the efect of Pre-Fs in reducing FPs is more pronounced on

PVD-R than on PVD, because the diference between the repaired functions in PVD-R and the corresponding

vulnerable functions is subtle, making it easier to mislead models without Pre-Fs.

RQ2.3: Can the localization algorithm ind where the true positive vulnerability should be ixed?

Results of Localization Algorithm.We evaluate the efectiveness of the localization algorithm that is the

second key step of sGuard+ by comparing it with sGuard on PVD. The vulnerability location error occurs

if a vulnerable function is correctly reported by the ML-based detection step, but not repaired correctly. As

shown in Table 18, we ind that there are 51 TPs of IOU of sGuard, while 23 of them are not properly repaired.

Figure 9 shows a typical example that is not repaired thoroughly by sGuard. The arithmetic expression on

line 13 is missed by the localization of sGuard. The main reason is that the heuristic applied by sGuard to

repair the IOU is insuicient. In contrast, each TP reported by XGBT of sGuard+ is correctly localized by the

localization algorithm, because the algorithm is designed to ind the location that should be patched according to

diferent types of vulnerability. Furthermore, the main reason for avoiding the errors of sGuard in IOU is that

the localization algorithm traverses each statement based on the AST node to repair each vulnerable arithmetic

expression.

RQ2.4: Do the repair rules of sGuard+ ensure that the transformed code is syntactically correct?
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1 contract sGuard{

2 function add_uint256(uint256 a, uint256 b) internal pure returns (uint256) {

3 uint256 c = a + b;

4 assert(c >= a);

5 return c;}

6 ... }

7 contract token is sGuard {

8 uint256 public totalSupply;

9 mapping (address => uint256) public balanceOf;

10 ...

11 function mintToken(address target , uint256 mintedAmount) onlyOwner {

12 balanceOf[target] = add_uint256(balanceOf[target], mintedAmount); // repaired by sGuard

13 totalSupply += mintedAmount; // missed by the localization of sGuard

14 Transfer(0, this , mintedAmount);

15 Transfer(this , target , mintedAmount);}

16 ... }

Fig. 9. An IOU example from CVE-2018-13087, which is not repaired thoroughly due to the localization problem of sGuard.

Table 18. The results of TPs of detection, correct localization and code transformation by sGuard and sGuard+ on PVD.

Vulnerability Types
sGuard sGuard+

TPs Correctly Localize Correctly Transform TPs Correctly Localize Correctly Transform

IOU 51 28/51 (55%) 25/51(49%) 85 85/85 (100%) 85/85 (100%)

UCR - - - 64 64/64 (100%) 64/64 (100%)

USI - - - 7 7/7 (100%) 7/7 (100%)

REN 10 10/10 (100%) 9/10 (90%) 28 28/28 (100%) 28/28 (100%)

TXO 17 17/17 (100%) 17/17 (100%) resp17 17/17 (100%) 17/17 (100%)

a
- denotes the vulnerability type unsupported by the tool.

Results of Repair rules.As shown in Table 18, the third columns below the second and third columns represent

the number of correct code transformations based on correct localization, which evaluate the correctness of the

repair rules of sGuard and sGuard+ on PVD, respectively. First, in contracts repaired by sGuard, 6 contracts with

IOU fail to compile. Among them, the 3 IOUs in each of the 3 contracts are correctly localized. The main reason

for these compilation errors is that sGuard uses string conversion to insert patch code so that the correctness of

the syntactic structure of the code cannot be guaranteed. However, the code transformation that implements the

repair rules of sGuard+ inserts patch code by modifying the AST nodes and then converting the AST to source

code. Therefore, there are no compilation errors in the contracts repaired by sGuard+.

Then, as we mentioned in ğ 3.1.1, there is a REN repaired by sGuard that changes the original business logic

because the repair rule of sGuard for REN adds the same mutex to each vulnerable function even if there are

interprocedural calls between functions. It is a signiicant problem of sGuard, because the high false positive

rate of sGuard is likely to cause this problem to occur. Since sGuard+ improves the repair rules for REN based

on ICG to address this problem and the vulnerability detection of sGuard+ is more accurate than sGuard, the

same problem disappears in the repaired contracts of sGuard. Last, the repair rules extended by sGuard+ for

UCR and USI perform well in the vulnerabilities on PVD because their patches for each vulnerable function are

independent of each other and the code changes are minor.
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Table 19. Time and memory consumption of three tools.

PVD SCRD
Total

SLoC 0-100 101-200 201-300 >300 0-200 201-400 >400

SCRepair

OOT - - - - 0 0/6 4/8 (50%) 4/17 (24%)

OOM - - - - 0 0 0 0

AVG Time - - - - 660/2=220s 5,520/6=920s 19,380/8=2422.5s 25,560/17=1503.53s

sGuard

OOT 0 1/59 (2%) 3/27 (11%) 3/12 (25%) 0/3 1/6 (17%) 1/8 (13%) 9/188 (4.8%)

OOM 0 0 0 0 0 1/6 (17%) 3/8 (38%) 4/188 (2.1%)

AVG Time 54/73=0.74s 1,055/59=17.88s 983/27=36.41s 1,033/12=86.04s 22/3=7.33s 399/6=66.5s 513/8=64.13s 4,059/188=21.59s

sGuard+

OOT 0 0 0 0 0 0 0 0

OOM 0 0 0 0 0 0 0 0

AVG Time 259/116=2.23s 295/68=4.34s 175/31=5.65s 239/19=12.58s 11/3=3.67s 41/6=6.83s 134/8=16.75s 1,154/251=4.60s

a
OOT denotes out of time.

b
OOM denotes out of memory.

c
- denotes the vulnerability type not supported by the tool.

Answer to RQ2: First, the XGBT model of sGuard+ achieves the almost best F1 score overall across ive

vulnerability types on PVD, and signiicantly eliminates FPs on PVD-R, compared to state-of-the-art tools.

Second, the localization of sGuard+ outperforms sGuard especially for IOU on PVD. Third, the Pre-Fs

we designed have a signiicant efect in reducing FPs. Finally, the repair rules of sGuard+ eliminate the

limitations of sGuard, and sGuard+ extend simple and robust repair rules for new types of vulnerability.

Overall, sGuard+ signiicantly improves sGuard in terms of vulnerability detection, localization, and repair.

7.4 RQ3: How eficient is sGuard+ and how much gas overhead of the patches is introduced by

sGuard+?

To answer the RQ3, we evaluate the performance of sGuard+ on PVD and SRCD compared to sGuard and

SCRepair. The timeout of sGuard+ and sGuard is set to be ive minutes for each contract the same as [75], and

the timeout of SCRepair is one hour in its experiments [115]. Three tools have a memory limit of 4GB, which is

the default for Python or Node.js applications on a 64-bit system. Furthermore, since the patch code for repair

afects the gas consumption of the transactions of deploying the contract or calling the repaired functions, we

compare the diference in gas consumption of these two transaction types before and after the repair on PVD by

reproducing transactions.

RQ3.1: What is the time and memory performance of sGuard+?

Time and Memory Consumption. Table 19 shows the evaluation of the time and memory consumption

results on PVD with 234 contracts and SCRD with 17 contracts, respectively. In the irst cell, the physical source

lines of code (SLoC) count the line numbers in the text of the contract source code including the comment and

blank lines, as in [84]. To demonstrate the performance of each tool as the number of physical source line of code

(SLoC) increases, we divided PVD and SCRD according to the number of SLoC with interval lengths of 100 and

200, respectively, because the average SLoC of SCRD is approximately twice that of PVD.

sGuard+ has the best performance on time consumption with an average time of 4.60 seconds, while sGuard

and SCRepair need 21.59 seconds and 25 minutes, respectively. The time performance of sGuard and SCRepair

is more signiicantly afected by the SLoC of the contracts than sGuard+. For example, there are 4 contracts

repaired by SCRepair with more than 400 SLoC in SCRD out of time, as well as 7 repaired by sGuard out of time

in PVD and 2 contracts in SCRD. According to the range to which the SLoC of the timeout contracts belongs, it is

clear that the higher the SLoC of the contracts, the more likely sGuard and SCRepair to have a timeout when

repairing the vulnerable contract.
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Table 20. The average gas consumption on PVD.

Tools Transaction Types Contracts IOU UCR USI REN TXO Total

sGuard Deploy Contracts

Vulnerable 1,494,271 - - 234,429 244,572 792,411

Repaired 1,654,655 - - 300,907 244,572 876,275

Overhead 160,384 (10.7%) - - 66,479 (28.4%) 0 (0.0%) 83,865 (10.6%)

sGuard Call functions

Vulnerable 35,985 - - 26,861 27,967 31,062

Repaired 37,184 - - 39,615 27,967 34,053

Overhead 1,200 (3.3%) - - 12,755 (47.5%) 0 (0.0%) 2,991 (9.6%)

sGuard+ Deploy Contracts

Vulnerable 1,251,173 469,703 983,450 328,670 244,572 843,723

Repaired 1,288,398 490,112 1,052,574 353,159 244,572 873,182

Overhead 37,225 (3.0%) 20,409 (4.3%) 69,124 (7.0%) 24,490 (7.5%) 0 (0.0%) 29,459 (3.5%)

sGuard+ Call functions

Vulnerable 31,365 22,057 43,812 87,876 27,967 40,196

Repaired 31,604 22,331 45,911 95,528 27,967 41,595

Overhead 239 (0.8%) 274 (1.2%) 2,098 (4.8%) 7,652 (8.7%) 0 (0.0%) 1,399 (3.5%)

a
- denotes the vulnerability type unsupported by the tool.

Fig. 10. The extra gas consumption for deploying contracts. Fig. 11. The extra gas consumption for calling functions.

Table 21. The training time of the XGBT model of sGuard+.

IOU UCR USI REN TXO Average

Training Time (Second) 84s 51s 79s 36s 161s 82.2s

Training Data Size (Thousand) 260k 250k 270k 220k 270k 254k

In addition, there are four contracts repaired by sGuard on SCRD out of memory, while none of the contracts

repaired by sGuard+ and SCRepair on PVD and SCRD exceed the memory limit. The reason is that the symbolic

execution approach performed by sGuard sufers from the path explosion problem that makes the time complexity

grow exponentially.

Training Time Consumption. Taking into account the additional overhead of model training, we evaluated

the training time of the XGBT model of sGuard+ on each vulnerability type. As shown in Table 21, the training

time of the model in the ive types of vulnerability is not longer than 3 minutes, among which the shortest

training time of the model for IOU is only 24 seconds, and the longest training time of the model for TXO is 161
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seconds. In addition, the third row of Table 21 also shows the size of the training data, and we can ind that in

general, the more data, the longer the training time. On average, about 254,000 data take about 82.2 seconds to

train.

RQ3.2: Does sGuard+ reduce the gas overhead compared to sGuard?

Gas Consumption. To evaluate the gas consumption increased by the repair of sGuard+, we compare the

diference in gas consumption of the transaction deploying the target contract and calling the target function

before and after the repair on PVD. The target function is the public vulnerable function that is repaired correctly

by sGuard+ on PVD and the target contract is the contract that contains a target function on PVD. In our

experiment, the sandbox testnet of Remix, which is the London fork of Ethereum, is used to simulate initiating

transactions. The transaction settings (e.g., account, gas limit, value, etc.) and arguments remain the same for the

original and repaired contacts or functions. Note that due to the diference between the testnet and the Ethereum

environment (e.g., the block number, timestamps and existing data), some transactions to call functions cannot

be executed successfully, such as the transaction calling a function that has an external call to a contract with a

ixed address on Ethereum but not on the testnet.

Table 20 shows the results of the average gas consumption on PVD. On average, users have to pay an additional

10.6% gas with sGuard and 3.5% gas with sGuard+ to deploy repaired contracts, as well as 9.6% gas with sGuard

and 3.5% gas with sGuard+ for calling repaired functions. The gas overhead of sGuard is much higher than

that of sGuard+ because the large number of FPs of sGuard (Table 14 shows the low precision of sGuard)

introduces many redundant patch code. The extra gas consumption caused by the repair is signiicantly diferent

for each type of vulnerability because it is directly related to the patch code for each type of vulnerability.

Figure 10 and Figure 11 show the extra gas consumption for deploying contracts and calling functions,

respectively. The yellow dotted line represents the average gas consumption. The patch code of USI requires the

most additional gas consumption for deploying contracts, and the patch code of REN requires the most additional

gas consumption to call functions. In contrast, the patch code of TXO requires the least for both deploying

contracts and calling functions. The reason is that the patch code of USI introduces a state variable __owner and

initializes it as msg.sender in the constructor that will be executed when the contract is deployed, and the patch

code of REN introduces the expensive read and write operators in the function to access the mutex state variable,

whereas the patch code of TXO merely replaces the variable tx.origin to msg.sender and accessing these two

global variables costs the same amount of gas.

Answer to RQ3: In terms of time performance, sGuard+ (4.60s) performs better than sGuard (21.59s) and

SCRepair (1503.53 s), and the training time of the XGBT of sGuard+ takes an average of 82.2 seconds. In

terms of memory performance, sGuard+ and SCRepair outperform sGuard that runs out of memory on 24%

contracts. The main reason is that ML-based vulnerability detection and rule-based vulnerability repair on

sGuard+ have less time consumption than symbolic execution trace analysis on sGuard and search-based

repair on SCRepair, respectively. On average, the gas overhead of deploying contracts and calling functions

of sGuard+ decreased 7.1 pp (from 3.5% to 10.6%) and 6.1 pp (from 3.5% to 9.6%), respectively, compared to

sGuard.

8 DISCUSSION

In this section, we irst discuss the threats to validity in ğ 8.1. Internal validity refers to trustworthy in terms of

the structure and variables of our study, and external validity refers to the universality of the results of our study.

Then, we discuss the diferences between rule-based and search-based vulnerability repair for smart contracts in

ğ 8.2. Third, we discuss the necessity for vulnerability detection guided by machine learning rather than voting

by of-the-shelf tools in ğ 8.3. Finally, we discuss further work in ğ 8.5.
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8.1 Threats to Validity

Internal Validity. In this work, we adopt three state-of-the-art vulnerability detection tools (Slither,

Securify andMythril) to label the training set. Since existing tools report signiicantly inconsistent results and a

large number of false positives, the results of three tools need to be manually conirmed. However, considering the

limited labor costs, we selectively conirm the results of three tools by three authors of this paper over a period of

two months. The labeling results can be extended in the future with more eicient tools. In addition, we utilize a

random search approach for hyperparameter optimization in machine learning models because randomly chosen

trials are more eicient than grid search [15]. The number of iterations is a key parameter of random search,

which determines the size of the extracted subparameter space. Due to the limitation of computing resources,

we set 100 iterations with 10-fold cross-validation to get the optimal parameter combination on the discrete

parameter space.

External Validity. The PVD is collected as a ground truth on ive vulnerability types to evaluate sGuard+ in

our experiments, which has a limited number of contracts and many demonstration contracts without complex

contexts compared to real-world contracts. To address the issue of the small size of the evaluation dataset (PVD),

we scale up the evaluation on the SCRD of which average SLoC is four times that of PVD since the contracts in it

are all from real-world projects. Additionally, for regression testing, the top 350 historical transactions of each

contract are collected, which contains all historical transactions of three quarters of the contracts in the dataset

(PVD and SCRD). However, due to the diference between the Ethereum network and the local network, historical

transactions that rely on environmental information (e.g., block number and timestamp) cannot be reproduced

successfully. However, 53% (4,206/7,982) and 54% (9,109/17,235) of transactions are reproduced successfully in our

local network for contracts repaired by sGuard and sGuard+, respectively, which can be used as a benchmark

to evaluate the impact of repair on the original business logic of contracts.

8.2 Rule-based Repair or Search-based Repair?

The rule-based automated program repair (APR), also known as template-based APR [63], is performed by

sGuard and sGuard+, and the search-based APR is performed by SCRepair. Rule-based APR employs predeined

program transformation rules as templates to repair for each vulnerability type. Search-based APR employs

randomly mutate operators to generate enormous repair candidates, which is usually guided by a heuristic search

strategy to ind the optimal solution. Rule-based APR is more advantageous than search-based APR to repair

vulnerabilities that require complex code transformations with less time consumption, while search-based APR is

more general because the patches generated by mutation are lexible for each vulnerability type [42].

For most smart contract vulnerabilities that cause signiicant asset loss in the real world, the main reason

for being exploited is the lack of proper conditional controls [73]. However, the advantage of the search-based

approach is to lexibly repair bugs caused by small syntactic errors. Hence, as shown in the experimental results

of SCRepair [115], most UCRs are repaired because repairing UCR only requires insertion of a check of the

call return value. Whereas none of the IOUs are repaired because the general way to repair IOU is to replace

vulnerable arithmetic operators with safe arithmetic functions inherited from the SafeMath contract, which

afects many statements outside the vulnerable code block.

Therefore, even though the search-based approach is general, for most explicit vulnerabilities that have ixed

repair patterns in smart contracts, the rule-based approach is more efective and eicient than the search-based

approach, especially for patterns that require code changes to multiple lines. In addition, the gas overhead

introduced by the rule-based approach is more manageable than that introduced by the search-based approach

for each vulnerability type.
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Fig. 12. The REN detection results of

Slither, Securify and Mythril on URD.

Fig. 13. The SLoC distribution of smart contracts on URD.

8.3 Machine Learning Based Guidance or Tools Voting Based?

As we mentioned before, although the existing smart contract vulnerability detection works are full-ledged,

there is no reasonable way to combine the existing work to accurately guide vulnerability repair, because the

existing tools have signiicantly inconsistent results for each vulnerability type. As shown in the empirical study

[32], there are a considerable number of false positives reported by existing tools and only a small number of

vulnerabilities are reported simultaneously by four or more tools. Consequently, we have to face the dilemma of

combining tools to guide vulnerability repair.

If we combine tools with high recall rate to cover as many vulnerabilities as possible, there will be a large

number of false positives so that the vulnerability repair is prone to afect the non-vulnerable code semantics and

generates many unnecessary patches increasing gas overhead. Additionally, if we only trust the vulnerabilities

reported by multiple tools simultaneously, there will be a non-negligible number of false negatives because

one tool may be complementary to others. For example, Figure 12 shows the REN detection results of Slither,

Securify, andMythril after removing the functions reported repeatedly. The intersection of the three tools is

only 0.48% (380/79,397), and not all of them are TPs because the tools have common problems such that the FPs

are caused by ignoring the REN defense method of mutexes. Hence, it is infeasible to adopt multiple tools to vote

for true vulnerability.

Moreover, considering the execution costs of existing tools, we evaluate whether the performance of sGuard

is acceptable. As shown in Figure 13, on URD, most contracts have SLoC between 100 and 400 and there are 23%

contracts with more than 400 SLoC, and 514 contracts with more than 2,000 SLoC or even tens of thousands. The

average SLoC of contracts is 340. It is known that the ability to analyze these complex contracts is non-trivial for

many large smart contract projects in the real world. However, because sGuardmay run out of time for contracts

with more than 100 SLoC (see details in Table 19) and the time consumption of the symbolic execution approach

(e.g., Mythril and sGuard) grows exponentially due to the path explosion problem, many contracts will not be

repaired successfully. On the contrary, the time consumption of the ML-based approach grows linearly with the

complexity of the contract. Hence, the ML-based approach has substantial advantages in terms of performance

compared with the rule-based approach.
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8.4 Limitations of sGuard+

In the evaluation of the XGBT of sGuard+, two main limitations of the machine learning approach are demon-

strated: 1) The models do not perform equally well for every type of vulnerability. 2) The models exhibit a

trade-of between recall and precision.

For the irst limitation, as shown in the Table 14 of RQ2.1, the F1 score (0.60) for IOU is signiicantly lower

than the score (> 0.80) for other vulnerability types. The primary reason for this limitation is that detecting

IOU relies on complex arithmetic and logical analysis, which is so challenging that none of the existing tools

perform very well. In general, the most suitable approach for detecting IOU is symbolic execution (e.g.,Mythril).

However, Mythril requires a signiicant amount of time to detect vulnerabilities, leading to a situation where its

practical efectiveness falls short of its theoretical potential. Despite this, the XGBT of sGuard+ outperforms

state-of-the-art tools for detecting IOU vulnerability, evening better thanMythril. Additionally, as shown in

the Table 16 of RQ2.2, FPs for IOU cannot be completely eliminated because the root cause of IOU stems from

arithmetic logic, which poses an inherent challenge for ML-based methods relying on static features.

For the second limitation, as shown in the Table 14 of RQ2.1, the XGBT of sGuard+ achieves the best precision

(1.00) for detecting USI, but its recall is lower than the other tools. The root cause of the low recall of XGBT is

mainly attributed to its sensitivity to conditional statements before self-destructing, and BiAn [116] introduces

numerous tautologies as branch conditions for obfuscation in PVD, which mislead the model. However, note

that conditional statements often serve as efective access control methods for destructing the contract, and

tautologies are rarely present in real-word contracts because they not only have no practical efect but also

increase gas overhead.

Additionally, as shown in the Table 16 of RQ2.2, in the evaluation results on PVD, particularly for the IOU

and USI vulnerabilities, we observe an inevitable trade-of between precision and recall in the models with and

without Pre-Fs. For example, compared to the model without Pre-Fs for IOU, the model with Pre-Fs reduces

24 (106-82) FPs, but also incurred a loss of 2 (89-87) TPs. However, the number of TPs sacriiced is negligible

compared to the signiicant reduction in FPs, which is immensely helpful in reducing the gas overhead for the

smart contract repair task. Furthermore, in the evaluation results on PVD-R, the models with Pre-Fs reduce the

number of FPs for UCR, USI, REN, and TXO to 0, demonstrating the signiicant efect of the Pre-Fs.

8.5 Future Work

In recent years, Ethereum is going through a rapid development phase, making the environment of smart contracts

dramatically change and the data of smart contracts explodes. For example, Ethereum undergoes at least 2 hard

forks per year on average [35], which may change the semantics of the opcode. The Solidity language is updated

with breaking changes 4 times (from version 0.4.0 to version 0.8.0) [6], which makes signiicant changes to the

syntax and semantics of some of the source code. The number of veriied contracts on Etherscan is basically

increasing at a rate of more than 500 per day [37], which represents the rapid generation of huge amounts of new

smart contract data.

Rapid and complex changes pose great challenges to ML-based vulnerability detection approaches. Since the

accuracy and performance of the ML model will decrease as the environment and data change, it is necessary to

account for the possible model drift problem [103] [108]. However, even the latest related research works [23][22]

have not yet caught up with the development frontier, and many works stay within a ixed range of applicability

as shown in [119]. Therefore, considering the challenge of exploring when models should be re-trained based on

the impact of the environment and data changes, we are committed to dedicating eforts to further investigation

and addressing this issue in our future research.
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9 RELATED WORK

In this section, we irst introduce four of-the-shelf automated program repair approaches. Then, the application

of these approaches in smart contract vulnerability repair is introduced from the bytecode-level to the source-

code-level. Finally, we show existing tools that utilize diferent program analysis and testing approaches to detect

vulnerabilities in smart contracts.

9.1 Automated Program Repair

Automated program repair (APR) techniques are proposed to alleviate manual efort to identify and remove

vulnerabilities in programs [109] [86] [91]. There are two steps of APR: localization and ix generation. Repair

can be successful only if the localization is correct and the granularity of the localization is the same as repair

[48]. Therefore, it is important to detect vulnerabilities with high accuracy for a repair tool, and the appropriate

granularity should be localized according to the repair rules.

Generate-and-validate and semantics-driven repairs are two main approaches on APR [42]. Generate-and-

validate approach repair programs by generating potential solutions until a solution is successfully validated.

Heuristics, constraint solving, and machine learning are three main techniques used to drive patch generation

[64]. In addition, patches can be generated based on ix patterns or templates [53].

• Heuristic search technique is used to guide patch mutations. GenProg [57] uses genetic programming

(GP) to search a solution passing all test cases from randomly mutated variants. RSRepair [87] uses random

search rather than GP to guide the patch generation process, which is more efective and eicient than

GenProg.

• Constraint solving technique utilizes an SMT solver to address the problem of program synthesis. SemFix

[74] formulates the requirement passing tests as a constraint by symbolic execution and repairs expressions

by program synthesis. Nopol [112] ixes buggy conditional statements by translating the synthesis problem

into the SMT problem based on collected runtime traces.

• Machine learning technique learns bug-ixing patterns by seq2seq models to transform the bug code

into the ixed code. DLFix [59] uses a two-tier DL model in which the irst layer learns the context of bug

ixes and the second layer learns the bug-ixing code transformations. CURE [52] uses pre-trained model,

code-aware search strategy and subword tokenization technique to improve the efectiveness of repair.

• Template-based APR approach uses ix patterns collected by a human study. PAR [53] is proposed to

reduce non-sensical patches generated by random mutations, using ix patterns learned from existing

human-writing patches. TBar [63] extends ix patterns collected from the data in the literature.

sGuard+ repairs speciic vulnerability types based on the corresponding existing public repair strategies.

Repair rules are designed to patch the vulnerable source code on typical patterns with diferent contexts. The main

idea of rule design is to prevent the vulnerability from being exploited without breaking the original function

with the minimum gas overhead.

9.2 Vulnerability Repair for Smart Contracts

Bytecode-level Repair Tools. SMARTSHIELD [117], EVMPATCH [90] and ELYSIUM [101] are three ARP

tools of the bytecode-level for smart contracts. SMARTSHIELD extracts the bytecode-level semantic information

by analyzing the AST and EVM byte code of contracts and then repairs the byte code by transforming the control

low and inserting a sequence of data guard instructions. The bytecode-level semantic information of the repaired

contract is compared with the original contract to validate that the irrelevant functions are not afected.

EVMPATCH performs a template-based repair approach. EVMPATCH proposes a bytecode rewriting engine to

adapt the patch templates to the vulnerable contracts and the transactions of the original contract are automatically

replayed to validate the correctness of the repair. The approach of ELYSIUM is the same as SMARTSHIELD and
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EVMPATCH, but ELYSIUM supports more vulnerabilities and minimizes the runtime gas overhead of transactions

than the other tools.

Source-code-level Repair Tools. SCRepair [115] is the irst search-based source-code-level APR tool for

contracts. Localization of SCRepair is based on two vulnerability detection tools (Slither and Oyente). Move,

inset, and replace operators are used to mutate statement-level or expression-level buggy code on the AST of the

original vulnerable contract. SCRepair introduces the notion of gas dominance to rank the repaired candidate

contracts, and the repair with the lowest gas cost will be selected irst. The validity criteria of the generated

patches contain three factors: test cases, outsource vulnerability detection tools, and gas consumption bounds.

In contrast to SCRepair whose repair is plausible, sGuard performs a semantic-driven approach on the source

code of contracts so that the vulnerability of contracts is guaranteed to be solved correctly. In addition, sGuard

is the only tool that localizes vulnerabilities through self-contained detection modules. However, we ind that the

detection approach of sGuard based on symbolic execution is inaccurate and time-consuming, so the correctness

of repair is severely afected, and the patches inserted by sGuard may introduce new vulnerabilities and afect

the original business logic.

sGuard+ works on improving sGuard to expand the supported vulnerability types and achieve better efec-

tiveness and eiciency. sGuard+ corrects the weak patch that cannot completely defend against vulnerability

and improves the correctness of repair based on the accurate machine learning based detection approach and the

corresponding localization algorithm.

9.3 Vulnerability Detection for Smart Contracts

Program analysis and testing contain multiple substantial approaches applied to automatic program vulnerability

detection such as static analysis, symbolic execution, and fuzzing. In recent years, researchers have proposed

many tools for detecting vulnerabilities in smart contracts.

• Static analysis detects vulnerabilities by examining program properties from code abstract representations

without executing code. Since all possible conditional branch paths are considered, the static analysis

approach has a high recall rate on vulnerability detection, but there may be many false positives caused

by infeasible paths [14]. Static analysis approaches are employed by [38] [100] [10] [41] [113] [61] [39] to

detect vulnerabilities in smart contracts. Among them, Slither [38] utilizes data low analysis and taint

tracking based on an intermediate representation to detect approximately 20 types of vulnerabilities. Both

SmartCheck [100] and SESCon [10] are based on XML parse tree to detect vulnerabilities. SmartEmbed

[41] utilizes the code clone approach, which identiies vulnerabilities based on the similarity with existing

vulnerable code. Clairvoyance [113] proposes an accurate cross-contract call chain analysis approach at

the source-code-level, and summaries ive major path protective techniques (PPTs) to speciically reduce

false positives for cross-contract reentrancy vulnerabilities. Compared with PPTs, we propose Pre-Fs to

reduce FPs of ive general non-cross-contract vulnerability types. Although cross-contract reentrancy

vulnerabilities are more diicult to detect than REN, some PPTs are applicable to both cross-contract and

general reentrancy vulnerabilities, which inspire the design of the Pre-Fs. For example, we design the

unprotected_ren feature to recognize PPT4 and PPT5 of Clairvoyance. However, in practice, the design

of PPTs is static and limited in number, while the machine learning method is more general and lexible,

and the accuracy of the model can be improved by designing richer Pre-Fs. In contrast, SmartDagger [61]

focuses on cross-contract vulnerability detection at the bytecode-level. SmartBugs [39] is a static analysis

framework that integrates ten tools and two datasets that are used for comparison between tools.

• Symbolic execution is a way that uses symbolic variables rather than concrete values as input to simulate

program execution so that the feasible path can be determined by solving the constraints. If a feasible path

violates pre-deined safety properties, the corresponding vulnerability will be reported. Compared to static
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analysis, the symbolic execution approach can avoid false positives, but a trade-of must be made between

loop iteration bounds and time consumption due to the path explosion problem [13]. Symbolic execution

approaches are used by [67] [83] [21] [102] [26] [70] [17] to detect vulnerabilities in smart contracts. Among

them, Securify [102] utilizes symbolic execution on the contract dependency graph to extract semantic

data that can be used to check compliance and violation patterns. Mythril [26] and Manticore [70] use

concolic execution and dynamic symbolic execution approaches, respectively. SAILFISH [17] combines

value-summary analysis with symbolic execution to efectively reduce false positives for state-inconsistency

bugs (i.e., reentrancy and transaction order dependence).

• Fuzzing is a dynamic testing approach that generates numerous unexpected inputs to repeatedly execute

programs and monitors exceptions when the program is executed. In general, fuzzing reveals vulnerabilities

without false positives, while the execution cost is expensive and the low code coverage leads to a high false

negative rate [120]. Existing work [62] [40] [51] [76] [114] use fuzzing approaches to detect vulnerabilities

in smart contracts. Among them, sFuzz [76] utilizes a feedback-guided fuzzing algorithm that transforms

the test generation problem into an optimization problem. xFuzz [114] improves sFuzz using a machine

learning-guided approach to reduce the search space.

• Machine learning has received increasing attention in the last ten years to address the problem of program

vulnerability detection [44] [118]. Machine learning can learn vulnerable code patterns from vulnerability

samples to recognize similar vulnerabilities. Compared to the conventional approaches mentioned above,

the machine learning approach is more general than ixed detection rules because various vulnerability

patterns can be learned based on lexible features. Feature engineering is the key factor to achieve high

precision and recall for vulnerability detection, and designing features is diicult because they are domain

speciic [31]. Speciically, rich features that are positively correlated with vulnerabilities can reduce false

negatives, and those that are negatively correlated with vulnerabilities can reduce false positives. [12] [107]

use machine learning to detect vulnerabilities of smart contracts. Eth2Vec [12] utilizes a neural network of

natural language processing to learn features of vulnerable EVM bytecodes and detects vulnerabilities based

on code similarity. ContractWard [107] transforms the source code into the opcode for simpliication

and then extracts 1619 bigram features from the simpliied opcodes. ContractWard uses multi-label

classiication and resampling algorithm to build the model.

sGuard+ utilizes a vulnerability detection approach based on machine learning. Compared to these tools that

employ program analysis and testing approaches, sGuard+ is less time-consuming than symbolic execution and

fuzzing tools, and sGuard+ reduces false positives reported by static analysis because the features negatively

correlated with vulnerabilities are designed to identify various methods of vulnerability prevention. In addition,

sGuard+ designs rich features that contain both source code features by static analysis and opcode features by a

pre-trained Word2Vec model, while the source code features are ignored by ContractWard and Eth2Vec.

10 CONCLUSION

In this work, we propose a machine learning guided rule-based automated vulnerability repair approach to

accurately detect and correctly repair ive types of vulnerability in smart contracts. We implement a tool called

sGuard+, which extends and enhances sGuard. Our approach addresses three key challenges: 1) Accurately

guide vulnerability repair using machine learning models and reduce false positives resulting from ignoring

vulnerability prevention strategies. 2) Reine the repair rules of sGuard to preserve the original business logic of

the contracts. 3) For the whole worklow, sGuard+ repairs vulnerabilities with lower time consumption and gas

overhead. Experiment results show that sGuard+ is more efective and eicient than existing source-code-level

repair tools.
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