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ABSTRACT
Java is a widely used programming language with the most com-
prehensive libraries in the world. To leverage the vast resources
of the Java ecosystem, several transpilers exist that facilitate the
conversion of Java libraries to the more nascent programming
language, JavaScript. Nonetheless, the transpilation of concurrent
Java to JavaScript presents significant challenges, primarily due
to the profound differences in memory model and concurrency
model between the two languages. To bridge this gap, we de-
velop a JavaScript concurrency runtime capable of supporting the
shared memory model and synchronization mechanisms inher-
ent to Java threads. To evaluate the effectiveness of our tool, we
manually construct a concurrency Java dataset. Preliminary ex-
perimental findings indicate that our tool successfully transpiles
concurrent Java to JavaScript using multiple workers, while main-
taining identical behavior. The source code of our tool is avail-
able on: https://atomgit.com/openharmony_jsweet/06-jsweet407.
The corresponding demonstration video can be found at: https:
//youtu.be/jB7sVUVWWTo.
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1 INTRODUCTION
As one of the most popular programming languages, Java boasts
the largest ecosystem in the world [21]. To leverage the benefits of
this extensive ecosystem, several transpilers have been developed
to automatically convert Java code to JavaScript (JS) [2, 11, 15].
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However, due to the fundamental differences in memory and con-
currency models between Java and JS [7], significant challenges
remain in Java-JS transpiler.

The basic concurrency components in Java and JS are Thread
and Webworker [6], respectively. There are two primary challenges
caused by differences between the concurrency models of threads
and workers. The first challenge❶ is that each thread in Java
shares memory, whereas each worker in JS communicates through
message passing. Although modern JS supports SharedArrayBuffer

[3] to share binary data between workers, recovering complicated
JS object from a binary buffer remains challenging. The second
challenge❷ concerns maintaining Java’s synchronized execution
semantics in JS’s asynchronous execution environment. In Java, the
execution flow can easily be paused to wait for signals, whereas in
JS, this is impossible unless the flow is labeled as async. Unfortu-
nately, the async label complicates the subsequent control flow and
significantly increases the implementation complexity of Java-JS
transpiler.

To tackle the challenges caused by the aforementioned differ-
ences, we propose our novel runtime, JCRuntime, and implement
the corresponding transpiler, CCTrans, for concurrent Java. In
JCRuntime, each JS worker maintains a copy of shared objects
(SOs). Consequently, JCRuntime creates get and set proxies for all
SOs, updating the latest values for each copy via messages when-
ever a set or get operation occurs. To simulate Java’s synchronized
mechanism, JCRuntime provides a series of blocked communi-
cation functions to update the value of SOs without requiring JS
async annotations. To evaluate CCTrans, we manually construct a
concurrent Java dataset and conduct experiments on it. Early ex-
perimental results indicate that our tool can successfully transpile
concurrent Java to JS while preserving the same behaviors.

This paper is divided into four main sections. In Section 2, we
provide background on the main concurrency features of Java and
JS, including some examples of related work. In Section 3, we detail
the design of JCRuntime and CCTrans, explaining their implemen-
tation and the limitations of our design. This section also presents
our experimental results and discusses some interesting findings. In
Section 4, we present the main conclusions and future work drawn
from implementing and evaluating our approach.

2 BACKGROUND AND RELATEDWORK
This section briefly describe the background for this paper, covering
the basic concurrent features of Java and JS. After that, we introduce
some related work on the translation of concurrency models and
the research topic of automatic translation from Java to JS.
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1 class Bar {

2 public static Object

3 lock = new Object ();

4 }

5 class Foo extends Thread {

6 public void run() {

7 synchronized(Bar.lock)

8 {

9 doSomething ();

10 Bar.lock.wait();

11 doSomething ();

12 Bar.lock.notify ();

13 }

14 }

15 }

(a) Concurrent Java

1 // In main executor

2 const worker =

3 new Worker("worker.js");

4 worker.postMessage("foo");

5 onmessage = (e) => {

6 console.log("received");

7 };

8
9
10
11 // In worker.js

12 onmessage = (e) => {

13 console.log("received");

14 postMessage("bar");

15 };

(b) Concurrent JavaScript

Figure 1: Concurrent Features

2.1 Concurrency Features
As shown in Figure 1a, class Bar has a static object lock, and class
Foo is a subclass of Thread that can create an instance executing
as a thread. In Java, the primitive keyword synchronized is used
to obtain a locker in every object. At line 7, each Foo instance
uses synchronized to obtain the locker in the object Bar.lock. If
an instance successfully acquires the lock, it executes the code of
synchronized body from lines 9 to 12. Otherwise, the thread is
blocked at line 7 until the lock is available. At line 10, the thread
instance calls method wait to release the lock and switch its state to
waiting until it is notified by another thread. At line 12, the thread
instance calls notify to wake up a waiting thread, allowing it to
attempt to acquire the lock and continue execution.

For JS, the only way its workers can communicate is via the
asynchronous two-way communication channel that allows either
worker to send messages to other. These messages are processed
using a registered callback (onmessage). In Figure 1b, the JS main
executor creates a worker and sends a message at line 4. Conse-
quently, lines 5-7 show the registration of a listener to receive all
messages from other workers. In the worker.js file, the worker also
registers a listener to receive messages and sends a message back
to the main executor using postMessage at line 14.

In summary, instances of Foo share the same memory space and
can freely access any in-scope variables. Furthermore, Java threads
switch their execution status between three states: blocked, waiting,
and running. In contrast, workers in JavaScript do not share mem-
ory and only communicate through postMessage, which serializes
and deserializes objects for messaging. Due to the specifications of
JS, the listener will only be executed when the worker is in an idle
state, that is, no more code to run.

2.2 Related Work
Over the past years, many researchers have focused on translating
concurrent programs. Especially in the area of distributed systems,
numerousworks have attempted to convert sharedmemory systems
to message-passing systems in C++. Attiya et al.[9] proposed an
approach to simulate single-writer multiple-reader shared memory
programs in a message-passing system. Davidson et al.[14] devised

postMessage(command, buffer)

Atomic.notify(buffer, 0)

Worker Master

Atomic.wait(buffer, 0)

Continue

Handle message

Continue Listening

buffer = 
new SharedArrayBuffer

Listening messages

Figure 2: Concurrency Model in JCRuntime

a dynamic analysis approach to identify concurrency semantics and
translate them into a message-passing model. Additionally, there is
extensive work based on Regular Section Descriptors to identify
shared memory [12, 13].

However, few researchers have focused on the translation of
concurrency code between different languages, such as Java and
JS. JSweet [2] is a transpiler that converts Java to JS, whereas it
ignores concurrency features. There are many other techniques
aimed at synthesizing JS from Java bytecode [4, 15]. Among them,
Leopoldseder et al. present a state-of-the-art approach to cross-
compile Java bytecode to JS, but it still has limitations in supporting
multithreading and synchronous APIs. The most related work is
Doppio [17], which simulates blocking using asynchronous JS APIs
and multithreading within a single main worker, as it lacked access
to the modern Atomics API at the time. Any language implemented
using Doppio must satisfy two properties to adopt its event segmen-
tation. Additionally, there are some other JavaScript transpilation
efforts, such as LLVM to JS [20], Racket to JS [19], and OCaml to
JS [18].

3 CCTRANS
In this section, we begin by introducing the implementation of CC-
Trans.Then, we discuss the limitations of current design. After that,
we present the early experimental results to show the effectiveness
of our tool.

3.1 Implementation
Since Java is a complex industrial-level programming language,
crafting a Java-JS transpiler from scratch is challenging. We decided
to extend JSweet [2], a Java to JS transpiler without supporting
concurrent features, to demonstrate our design. In JSweet, each
Java file is translated to a TypeScript [5] file and subsequently
converted to pure JS by the TypeScript Compiler (TSC).
Concurrency Model. Figure 2 depicts the concurrency model
of JCRuntime. To simulate the behaviors of shared memory, the
master worker maintains the values of all shared objects (SOs) as a
data center. When a get operation of SO occurs, the worker changes
its state to sleep and sends a data query to the master to fetch the
latest value. The worker wakes and continues execution once the

2
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Table 1: The number of messages. (CCTransD=>? indicates the transpiler without optimization, while CCTrans>? is the
optimized transpiler. 0E4A064>? and 0E4A064D=>? represent the average number of messages with and without optimization,
respectively.)

CCTransD=>? CCTrans>? 0E4A064D=>? 0E4A064>?

Actor 183 212 184 183 183 69 83 70 69 69 189 72
Alter 60 57 60 57 60 169 169 170 169 170 169.4 58.8
Array 1866 1563 1563 1565 1865 20 20 20 20 20 1684.4 20

BankAccount 185 182 181 181 182 75 75 75 75 75 182.2 75
Bicycle 378 378 378 378 378 141 138 141 141 141 378 140.4

CookAndCustomer 576 295 295 575 295 108 108 108 229 222 407.2 155
CookAndCustomerWithSleep 358 356 356 357 357 150 150 150 150 150 356.8 150

CookAndCustomers 3482 3426 3425 3411 3425 1333 1301 1301 1308 1301 3433.8 1308.8
Join 26 25 25 33 25 11 11 11 14 11 26.8 11.6

MultiProducer 603 603 502 581 591 246 252 248 248 246 576 248
NoSyncClass 40008 40008 40008 40008 40008 2 2 2 2 2 40008 2
NoSyncFunc 4012 4012 4012 4012 4012 10 10 10 10 10 4012 10
OnlySyncFunc 40012 40012 40012 40012 40012 10 10 10 10 10 40012 10
ParkingLot 311 311 311 311 311 107 107 107 107 107 311 107

ProducerAndAssmbler 466 463 325 442 463 177 177 169 169 119 431.8 162.2
ProducerAndComsumer 29030 29017 29027 29021 29017 10004 10004 10002 10006 10004 29022.4 10004

SyncClass 40010 40010 40010 40010 40010 10 10 10 10 10 40010 10
SyncFunc 40012 40012 40012 40012 40012 10 10 10 10 10 40012 10

TestRunnable 1 1 1 1 1 1 1 1 1 1 1 1
VolatileFunc 4006 4006 4006 4006 4006 4004 4004 4004 4004 4004 4006 4004
VolatileTest 1320 3959 3301 3672 3141 3669 3683 3322 2876 3457 3078.6 3401.4

required value is fetched. The reason for workers to actively fetch a
value lies in the fact that JS lacks preemption; Once an event begins
execution, it will continue uninterrupted until it either finishes or is
terminated by the browser. If value updates rely on passive message
pushing, workers can read outdated and dirty values. Imagine this
scenario: when a worker Foo is executing a long loop in a function,
a variable bar’s value is updated by other workers from 1 to 2,
and the update message is pushed to worker Foo. Due to the lack
of preemption, Foo never triggers the message receiving handler
until it finishes the currently executing function. In this function
execution, Foo still reads the value of bar as 1, which is an outdated
and dirty value.

On the other hand, for set operations of SOs, theworker sends the
updated value to the master worker without going to sleep. Since
the master handles received messages sequentially in a message
queue without parallelism, it ensures that value fetch requests occur
after the corresponding value update requests.
Runtime. To simulate the behaviors of Java concurrent code, we
provide substituted JS classes for Java standard classes. For example,
JCRuntime contains a JS class Thread which starts a new worker
and waits for signals, executing the run method once a start signal
is received. We leverage the modern JS feature Atomics [1] to simu-
late the thread synchronization mechanism. Atomics provides two
significant methods,wait and notify, to change the states of workers
similar to Java threads. Based on Atomics, we devise substituted
functions for Java concurrent features (keywords and standard class
methods). Notably, we design the sync function of JCRuntime with
the aim to replace the synchronized keyword. After calling sync,
the worker sends a message to the main worker with a signal buffer
and calls Atomics.wait to wait for the resume signal from the signal

buffer. Furthermore, we assign each SO a unique ID across different
workers to identify the copies’ values. Consequently, the master
maintains four queues with the IDs of workers and SOs to record
blocked workers, lock holders, waiting lock workers, and condition-
ally waiting workers. With these queues, JCRuntime can simulate
the status-switch behavior of Java threads in JS workers.

JCRuntime goes beyond basic implementations by leveraging
the Java Memory Model (JMM) [8] to reduce the number of mes-
sages. In summary, the JMM is a weak memory model, which
means that if there are no data races under Sequential Consistency
(SC) [10], we can assume SC when reasoning about our program.
Therefore, the optimized JCRuntime only gets and sets values for
the master when obtaining and releasing a lock or when the value
is marked as volatile.
Transpiler.With JCRuntime, CCTrans transpiles concurrent Java
in two primary stages. In the first stage, CCTrans identifies which
objects are SOs. We utilize the symbol table and consider all public
fields of Java threads as potential SOs. Consequently, CCTrans
inserts proxy function calls for the classes containing SOs to hijack
the get and set operations. In the second stage, CCTrans translates
the concurrent keyword and standard library methods. Notably, the
synchronized keyword is translated to JCRuntime functions sync
and unsync. Since a thread releases the obtained lock after its control
flow exits the Java synchronized block, CCTrans must explicitly
insert an unsync function call to release the obtained lock before
each control flow exit point. For example, the return statement and
exceptions can directly exit the synchronized block while releasing
the lock. Therefore, CCTrans analyzes and produces the control
flow graph of the code, and inserts the unsync function call into
the exit basic block to release the lock.

3
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3.2 Limitation
We identify two primary limitations of our JCRuntime and CC-
Trans. Regarding JCRuntime, it currently struggles to manage
complex objects within our simulation framework. Complex objects
often contain intricate references to other objects or self-references,
which renders them unserializable through message passing. Ad-
dressing this challenge goes beyond the scope of this paper. As for
translation, its insertion of unsync calls during inter-procedural
control flow analysis is not unsound. There are instances where
the control flow terminates prematurely, leading to locks not being
released from deeper levels of the call stack. In contrast, Java’s
release operation is handled at the bytecode level, ensuring that all
control flow details are meticulously captured - a level of compre-
hensiveness that our current approach does not achieve.

3.3 Evaluation
We construct 21 Java files with concurrent features as our dataset
and conduct experiments to evaluate our tool’s effectiveness. Each
experiment is repeated five times, and the passed messages are
recorded in the master worker, as it acts as the data center. For
the compiled JS files, we set up a running environment in Chrome
version 125.0.6422.176 (Official Build) (x86_64). We manually check
the compilation correctness by comparing the output results with
those from OpenJDK 22.0.1.

The experimental results show that we successfully compile all
the concurrent Java files while preserving their behaviors. Fur-
thermore, the optimized transpiler (CCTrans>? ) produces better
JS code that performs with fewer passing messages. Specifically,
for the NoSyncClass, CCTrans>? sends only 2 messages, while
CCTransD=>? produces 40,008 messages. Since there are no syn-
chronized keywords or volatile variables in the NoSyncClass file,
the workers in the optimized JS never fetches or updates local mem-
ory to the master. In contrast, since the SO is annotated as volatile,
each operation has to update the results to the master via messages,
resulting in a similar number of messages for both CCTrans>? and
CCTransD=>? .

4 CONCLUSION AND FUTUREWORK
Several Java transpilers aim to leverage the Java ecosystem to JS.
Current solutions partially address this problem but often circum-
vent significant performance-related features such as concurrency.
Since JS lacks a concurrency infrastructure, translating two different
concurrent models remains challenges.

In this paper, we attempt to provide the same multithreading
semantics of Java for JS, eliminating the significant differences
between their concurrency models. Specifically, we propose a novel
concurrency model for JS and implement it to simulate the thread
status and synchronous APIs of Java. Furthermore, we reduce the
total number of passed messages based on the Java Memory Model.
Finally, we implement a transpiler with our runtime and conduct
early experiments on it. The experimental results show that our tool
can successfully transpile the Java code in our dataset and that the
optimization effectively reduces the number of passing messages.

In the future, we will leverage large language models [16] to
enhance our transpiler and improve the precision of inserting the
unsync function calls. Additionally, we aim to tackle the challenge of

serializing and deserializing objects with references by utilizing the
rewriting capabilities of large language models. After that, we will
conduct large-scale experiments to transpile popular concurrent
Java libraries to validate the effectiveness of our tool.
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