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ABSTRACT
Rust is a relatively new programming language known for its mem-
ory safety and numerous advanced features. It has been widely used
in system software in recent years.Thus, ensuring the reliability and
robustness of the only implementation of the Rust compiler, rustc,
is critical. However, compiler testing, as one of the most effective
techniques to detect bugs, faces difficulties in generating valid Rust
programs with sufficient diversity due to its stringent memory
safety mechanisms. Furthermore, existing research primarily fo-
cuses on testing rustc to trigger crash errors, neglecting incorrect
compilation results - miscompilation. Detecting miscompilation
remains a challenge in the absence of multiple implementations of
the Rust compiler to serve as a test oracle.

This paper tackles these challenges by introducing rust-twins,
a novel and effective approach to performing automated differen-
tial testing for rustc to detect both crashes and miscompilations.
We devise four Rust-specific mutators and adapt fourteen general
mutators for Rust, each intends to produce a syntax and semantic
valid Rust program to trigger rustc crashes. Additionally, we de-
velop a macroize approach to rewrite a regular Rust program into
dual macros with equivalent behaviors but in different implementa-
tions. Furthermore, we design an assessment component to check
the equivalence by comparing the expansion results with a sim-
ple macro input. Finally, rust-twins attempts to expand the two
macros with numerous complex inputs to detect differences. Due
to the macro expansion mechanism, the root causes of differences
can arise not only from the macro expansion part but also from any
other mis-implemented compiler code.

We have evaluated rust-twins on the latest version of rustc.
Our experimental results indicate that rust-twins achieves twice
∗Yinxing Xue is the corresponding author.
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the total line coverage and identifies more crashes and differences
than the best baseline technique, rustsmith, after 24 hours of
testing. In total, rust-twins triggered 10 rustc crashes, and 229
of the generated macros exposed rustc differences. We analyzed
and reported 12 previously unknown bugs, of which 8 have already
been confirmed and fixed.
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1 INTRODUCTION
As a relatively new system programming language, Rust has gained
widespread use and has become one of the world’s most admired
languages for years [5]. Rust ensuresmemory safety through several
safety rules, and its performance is comparable to traditional system
programming languages such as C and C++. To benefit from safety
and performance, numerous safety-critical, low-level system soft-
ware applications are being rewritten in Rust [1, 6, 21, 29, 31]. How-
ever, any defects in Rust compiler (rustc) can result in unreliable
behaviors and security breaches in these systems. Consequently,
there is a need to develop a novel test approach to effectively detect
defects for rustc to improve the quality of Rust applications.

Compiler Testing is an effective technique to find compiler bugs [9].
However, automatically employing it for rustc remains two pri-
mary challenges, preventing the existing techniques from effec-
tively exposing defects in rustc. The challenge❶ is generating
valid Rust programs that can reach the mid- and back-end com-
piler passes of rustc, since any Rust programs that violate safety
rules [37, 43] would be rejected in the early stages of rustc. Exist-
ing fuzzing techniques tailored to safety rules are incomplete for
Rust. For example, rustsmith [32] does not support advanced Rust
features like concurrency, traits, and unsafe code, all of which are
heavily related to safety rules, and the CLP-based rustc fuzzer [13]
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only focuses on type-checker bugs. The challenge❷ lies in how to
construct an oracle to detect the miscompilation bug without multi-
ple Rust compiler implementations. Due to the short history of Rust,
it has only a single complete compiler implementation, whereas dif-
ferential testing requires multiple implementations as test oracles
to identify errors. Although there are some incomplete and work-
in-progress third-party Rust compilers, such as gccrs and mrustc,
using them as oracles like existing techniques [7, 11, 22, 24, 32, 42]
would result in numerous false positives and would not be able to
test unsupported programming language features.

In this paper, we present rust-twins, a tool designed to auto-
matically test rustc for both crashes and miscompilations. The key
novel insight is that, in Rust, there are two kinds of independent
macro systems, each with different expansion mechanisms: one
expands in the front end of rustc, while the other one involves
the entire compilation process from parsing to code generation.
Consequently, any bugs in the compilation would result in incor-
rect macro expansion results. Therefore, we can consider these dual
macro systems as differential implementations to construct a test
oracle within a single compiler implementation.

Overall, rust-twins automatically mutates Rust programs and
rewrites a regular Rust program into a pair of ’twin’ macros to
serve as a testing oracle. Specifically, rust-twins takes a seed pool
as the initial corpus and selects one seed to be mutated with the
highest priority based on four metrics. In the mutation component,
rust-twins randomly picks a mutation prompt from the prompts
pool and asks a large language models (LLMs) to modify the seed
according to the corresponding prompt. Consequently, rust-twins
leverages rustc to compile the mutated seed and detect potential
defects. Furthermore, the selected seed is sent to the macroize
component to help generate two equivalent macros using the LLMs.
However, since the generated macros are not always equivalent,
rust-twins employs an assessment component to improve the
success rate of generation by expanding it with our predefined
default arguments and comparing the expanded results. Finally,
rust-twins asks the LLMs to generate different macro inputs and
combines some historical macro inputs to expand the dual macros
into High-level IR (HIR) [30] and identify differences.

To address challenge❶, we propose a mutation approach that
consists of seed prioritization and eighteen LLM-driven mutators
designed to mutate Rust programs without syntax and semantic
errors. For seed prioritization, we use four metrics to measure the
probability of triggering defects: coverage, function size, execution
time, and lifetime complexity. Notably, the lifetime complexity is
computed by the number of lifetime variables in a Rust function;
the more lifetime variables, the higher the likelihood of triggering
errors in the type- and borrow-checker. For LLM-driven mutators,
we devise four Rust-specific mutators and adapt fourteen existing
mutators as mutation prompts for the LLMs. Consequently, the
LLMs can modify Rust programs by the mutation prompts without
safety rules violations, and each of these prompts contributes to
mutation diversity, increasing code coverage.

To tackle challenge❷, we design the macroize component
to automatically obtain dual equivalent macro implementations:
macro by example (MBE) and procedural macro (PCD) [3]. MBE is
a declarative-style macro, similar to the macros in C/C++, while
PCD is an imperative-style macro with stronger programmability.

To ensure the equivalent behavior of the dual implementations,
we devised a list of default macro expansion values covering all
potential input types. Once the expansion results of the dual macros
are equivalent with the same input, rust-twins considers them a
valid oracle. Otherwise, a regeneration process for macroize would
be performed. Consequently, rust-twins attempts to expand the
macros with more complicated inputs from historical storage and
currently generated inputs from LLMs, and identifies the differences
in the expanded results.

To evaluate rust-twins, we pre-processed rustc’s unit tests
as initial seeds and applied rust-twins to rustc. We compared
rust-twins with libfuzzer and the state-of-the-art rustc fuzzer
rustsmith. The experimental results show that rust-twins’s cov-
erage is 2x more than rustsmith’s. In total, we generated 6048
Rust programs and 3552 macros with 73.5% and 49% stillborn rate
respectively; 239 of them triggered differences and crashes in rustc.
We reported 12 previously unknown bugs, of which 8 have already
been confirmed or fixed.

The main contributions of this paper are as follows.

• MutationComponent:We devise 18 programmutation prompts,
4 of which are tailored to Rust’s unique features, such as life-
time annotations and ownership. The remaining 14 prompts
are adapted from previous mutation-based fuzzers. Using these
prompts, we can generate valid Rust programs as test cases by
LLMs to trigger compiler crashes.
• Macroize Component: To the best of our knowledge, we are the

first to develop an approach that generates oracles for compiler
testing using its two advanced macro systems within a single
compiler implementation. Due to the mechanism of macro ex-
pansion, this approach allows us to detect defects caused by any
part of the compiler, not just those limited to the front end.
• rust-twins:We build an effective differential testing tool named

rust-twins for Rust by integrating mutation and macroize com-
ponents. The experimental results demonstrate that rust-twins
outperforms baseline techniques and can detect bugs in the wild.
In total, 12 bugs were found in rustc, with 8 of them being fixed
or confirmed by the developers.

To support the open scientific, all the code of rust-twins and
experimental data can be found at https://sites.google.com/view/
rust-twins/index

2 BACKGROUND
This section provides the background for this paper, covering Rust’s
two kinds of macro systems and code generation challenges caused
by Rust’s safety rules.

2.1 Macro System of Rust
Macro is a meta-programming feature designed for expert program-
mers. Generally, a macro accepts some code representations and
generates new code at compile time. Macro systems can greatly en-
hance the expressive capability of programming language. In Rust,
there are two different kinds of macro systems. Specifically, MBE is
a declarative macro that matches the input by token pattern, while
PCD provides a programmable way to generate a token stream as

https://sites.google.com/view/rust-twins/index
https://sites.google.com/view/rust-twins/index
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1 #[macro_export]

2 macro_rules! mbe {

3 ($main_body:expr) => {

4 fn main() {

5 $main_body

6 }

7 };

8 }

9
10

(a) Macro by example (MBE)

1 #[proc_macro]

2 pub fn pcd(input: TokenStream)

3 -> TokenStream {

4 let input_expr: Expr =

5 parse(input).unwrap();

6 let expanded = quote! {

7 fn main() {#input_expr}

8 };

9 TokenStream::from(expanded)

10 }

(b) Procedural macro (PCD)

Figure 1: Rust’s macro systems

1 let foo = String::from("foo");

2 let bar = foo;

3 println!("{}", foo);

4

(a) Ownership rule violation

1 fn foo<'a: 'b, 'b>(fst: &'a i8,

2 snd: &'b i8) -> &'a i8 {

3 return snd;

4 }

(b) Lifetime rule violation

Figure 2: Safety rule violations

code. Since PCD supports complete Rust features, rustc first com-
piles PCD as a library, and uses it to execute the generation logic
in link time. All Rust macros can be invoked using the ! operator,
such as the commonly used println! macro.

As shown in Figure 1a, a built-in macro named macro_rules is
used to define the MBE. In line 1, the attribute declares the macro
visibility. This macro definition contains a single pattern, from lines
3 to line 7, which accepts an expression token and generates a
main function definition with the accepted expression. In MBE,
the parameter variable is referenced by starting symbol $, such as
$main_body in line 5.

In Figure 1b, the function pcd with attribute #[proc_macro] is a
procedural macro. A PCD is simply a function that accepts a token
stream and returns another token stream. In line 5, the input is
parsed as an expression token. Then, from lines 6 to 8, the built-in
macro quote! is invoked with the parsed expression token #input_expr

to construct a main function. In line 9, the expanded result is con-
verted to a token stream.

Both macro systems provide approaches to transform and gen-
erate code at compile time, with partially overlapping functions.
Additionally, rustc implements MBE in the compiler frontend,
while PCD must be compiled through all the compiler phases first.

2.2 Safety Rules of Rust
To ensure memory safety, Rust leverages two fundamental con-
cepts: ownership and lifetime. Each value in Rust can be owned
by only one variable. Once the variable’s lifetime ends (i.e., the
execution flow exits the variable’s lexical scope), the value is freed.
For example, in Figure 2a, the variable foo owns the string value
"foo" at line 1, and this value is moved to the variable bar at line 2.
Consequently, Rust forbids the usage of foo at line 3 until another
value is assigned to foo.

The prevention of memory errors in Rust extends beyond own-
ership. Rust provides lifetime annotations for value references in
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Figure 3: Workflow of rust-twins.

function type signatures. In Rust, the lifetime of a reference is rep-
resented by a quote following a name, such as 'a. Additionally,
developers can specify relationships between lifetime variables us-
ing the typing 'a: 'b, indicating that a’s lifetime must be at least
as long as b’s. If these lifetime constraints are not satisfied, rustc
raises a compile-time error. For example, in Figure 2b, the function
foo has two arguments that are references to i8, with fst’s lifetime
being at least as long as snd’s. The return type &'a indicates that
its lifetime is also at least as long as snd’s. However, the argument
snd, which has a shorter lifetime, is returned at line 3, causing a
violation of the lifetime rules.

All the compile-time rules restrict developers from casually cre-
ating aliases and mutability. These rules force users to carefully
consider how a value is used and how long it lasts.

3 PROPOSED APPROACH
In this section, we begin by introducing the workflow of rust-
twins. Then, we illustrate how rust-twins prioritizes seeds to
effectively select them. After that, we demonstrate the Rust-specific
mutators that address the challenges of Rust code generation caused
by the ownership and borrow checker. Finally, we detail how to
use the large language model to rewrite Rust functions as macros
and identify the differences.

3.1 Overview
Workflow. Figure 3 illustrates the workflow of rust-twins. The
input to the overall framework is a set of initial seeds and the out-
puts are detected differential cases. We extract functions from the
rustc code base and the unit test cases as rust-twins’s seed pool.
rust-twins consists of three components: 1©seed prioritization,
2©mutator and 3©macroize.
In step 1©, rust-twins uses a multi-objective optimization to

prioritize the seeds based on various objectives. We propose four
objectives using both static and dynamic information. Notably, the
lifetime complexity metric is designed specifically for Rust’s unique
lifetime features. In step 2©, rust-twins takes the highest priority
seed as input and randomly selects a mutation prompt to modify
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1 macro_rules! mdriver {
2    ($expr:expr) => {
3        fn foo() {
4            $expr?;
5        }};
6 }

(b) Generated MBE from seed

1 pub fn mdriver(input: TokenStream) -> TokenStream {
2    let expr = parse_macro_input!(input as Expr);
3    let expanded = quote! {
4        fn foo() {#expr?;}};
5    TokenStream::from(expanded)
6 }

(c) Generated PCD from seed

1 fn foo() -> Option<i32> {
2    let bar = Some(1)?;
3    return None;
4 }

(a) The mutated seed

1 mdriver!(Vec::<i32>::new());
2 mdriver!(0..10);
3 mdriver!([1, 2, 3, 4, 5]);
4 mdriver!(Some("Value"));
5 mdriver!(Box::new(3));
6 ...

(d) Macro invocations

1 fn foo() {
2 match #[lang = "branch"]
3 (#[lang = "Range"]{ start: 0,end: 10,})
4 {...};
5 }
6

(e) The expanded MBE HIR

Seed pool

1 fn foo() {
2 #[lang = "Range"]{
3 start: 0, 
4 end: match #[lang="branch"](10){...},
5 };
6 }

(f) The expanded PCD HIR

Difference

Dual Macros Generation
LLM

LLM

LLM

Dual Macros Expansion

Identify
Comparison

Mutation

Figure 4: How rust-twins detects the bugs

the seed using LLMs. The mutated seed is then placed back into the
seed pool for the next round of testing. Simultaneously, the selected
seed is also sent to step 3©, where rust-twins queries LLMs to
rewrite the seed as MBE. Once the first rewriting is successful,
rust-twins asks LLMs to rewrite the generated MBE into PCD.
After rewriting, rust-twins assesses the correctness of these two
generated macros by checking whether they expand to the same
results in a simple context. If so, rust-twins queries LLMs to
generate numerous macro invocations and attempts to identify any
differences. If not, rust-twins repeats the rewriting process until
it passes the correctness assessment.
Motivating Example. Figure 4 illustrates the details of each step
to detect a miscompile bug, along with the corresponding generated
code and results. In Figure 4a, the code serves as an initial seed for
macroize and undergoes several mutation processes. In the function
body, an option value Some(1)? attempts to extract the value 1 and
assign it to the variable bar.

Consequently, rust-twins queries the LLMs to rewrite the seed
and obtain a MBE as shown in Figure 4b. Specifically, this MBE is
named mdriver, and the LLMs take the function body as the macro’s
argument $expr following the operator ?. Subsequently, a PCD is
generated based on the MBE by the LLMs, as depicted in Figure 4c.

After rust-twins collects the two macros, it performs a simple
assessment to ensure that these two macros exhibit identical be-
havior. Consequently, rust-twins instructs the LLMs to generate
ten invocations for the MBE based on the input token type expr.
The generated invocations maintain sufficient diversity of inputs,
as shown in Figure 4d. Among them, the invocation mdriver(0..10)!
triggers a difference between the MBE and the PCD as illustrated
in Figure 4e and Figure 4f.

For the expanded MBE HIR, the outermost code, the match expres-
sion, is derived from the operator ?. However, in the expanded PCD
HIR, the outermost code is the Range expression, which is derived
from the operator (0..10). Clearly, these two compile results lead to
a miscompile bug. rust-twins identifies the differences in HIR by
comparing the HIR dump strings character by character and raises
a detected error

3.2 Seed Prioritization
rust-twins utilizes multi-objective optimization to prioritize the
seeds. In this section, we introduce the metrics that rust-twins
employs to construct the objectives and explain the rationale behind
their selection.

3.2.1 Metrics. In summary, there are four metrics in rust-twins:
coverage, function size, compilation time, and lifetime complexity.
The reasons for using these metrics are as follows:

• Coverage ("1). Since the mutators we used tend to combine mul-
tiple seeds and increase the programming language features of
seeds, the coverage function is almost monotone increasing. Con-
sequently, higher coverage seeds are more likely to reach new
code regions and good coverage.
• Function size ("2). The larger a function’s codebase, the greater

opportunities to detect expansion differences.
• Compilation time ("3). In Rust, a constant function’s execution

during compilation can result in long compilation time. rust-
twins attempts to detect unterminated compilation by favoring
seeds with longer compilation time.
• Lifetime complexity ("4). Intuitively, seeds with complex lifetime

cover more code of ownership- and borrow-checker. Thus, rust-
twins prefers functions with more lifetime variables and lifetime
subtyping relations. Notably, the metric "4 has two different
impact factors: lifetime variables (;1) and lifetime subtyping rela-
tions (;2). We compute "4 for a Rust function using the formula
"4 = |;1 | + 2 × |;2 |, where |;1 | is the number of lifetime variables
and |;2 | is the number of lifetime subtyping relations.

3.2.2 Objective Function of rust-twins. We revise the objective
function for rustc fuzzing with the aforementioned multiple met-
rics. The definition is as follows:

Definition 3.1 (Objective Function of Seed Prioritization.). Given a
set of seeds S and multiple objectives $= for = ranging from 1 to : ,
the goal of seed prioritization is to select a seed B∗ from S that:

B∗ = argmax
B∈S
($1 (B),$2 (B), . . . ,$: (B))
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In rust-twins, we introduce the above four metrics as optimiza-
tion objectives. Here is the mapping betweenmetrics and objectives:
$= = "= , we aim to maximize all the metrics to achieve the best
testing performance. To optimize the objective function, we adopt
the nondominated sorting (NS) algorithm from cerebro [23]. The
basic idea of NS is to efficiently calculate themost edge seeds (Pareto
frontier) by ranking the seeds, and pop seeds in lower rank.

3.3 Mutator
Due to Rust’s strict compilation rule checking, designing mutators
for it can be tedious. Thus, rust-twins leverages large language
models to assist in mutating Rust programs. We devise four Rust-
specific mutation prompts to accommodate the static checker of
Rust. Additionally, we adapt 14 mutators for Rust from previous
works [14, 28]. In each mutation round, rust-twins attempts to
randomly select a mutation prompt using the under-mutate seed
to construct the LLM prompt.

3.3.1 Mutation Prompts. The prompts are summarised in Table 1,
and are categorised into Rust-specific, GrayC [14] and DIE [28].
Rust-specific(lines 1-4 in Table 1). For this category, all the mu-
tators are related to Rust’s unique features. For example, the LIFE-
TIME mutator converts non-reference type arguments to reference
type arguments and adds lifetime variables to these references. If a
Rust function has two lifetime variables, the OUTLIVEmutator adds
outlive lifetime bounds for these two variables. The OWNERSHIP
mutator attempts to introduce more ownership transformations
and additional borrows to complicate the function body. The last
mutator, UNSAFE, adds unsafe code blocks, allowing dereferencing
of raw pointers, which may cause memory unsafety.
GrayC and DIE(lines 5-18 in Table 1). Besides the Rust-specific mu-
tators, we adapt fourteen mutators from previous mutation-based
compiler testing: DIE and GrayC. From lines 5 to 16, the mutators
manipulate single statements or expressions to mutate the original
program, while lines 17-18 contain mutators that are multiple-input
transformers. The three mutators in DIE tend to change the pro-
gram without any structural modifications. In GrayC, the mutators
do not preserve program structures. For example, DUPLICATE and
INJECT-CONTROL-FLOWmay insert break or continue statements
into a loop structure, causing control flow modifications. The func-
tion combination mutators (lines 17-18) take a source program and
a destination program and combine them by replacing, concate-
nating, and interleaving their bodies. In previous Abstract Syntax
Tree (AST) based mutation approaches [14], these types of muta-
tors have to maintain the symbol table to avoid duplicate names
and ownership conflicts in Rust. Fortunately, we can combine two
functions more efficiently by leveraging LLMs to satisfy semantic
checking.

3.3.2 Query Template. The mutation query prompt consists of
three components: prompt head, mutate action and under-mutate
program. The query template is shown as follows:
Return the pure Rust code between ```rust and ```.

Don't explain the code and generate the rust code

block itself.

{mutation_prompt}

Algorithm 1 Macroize Component. (E(<) is m’s expanded result
with default input, E(<, 8) is m’ expanded result with input i)

Input: Rust function
Output: Identified difference

1: function Macroize(� )
2: <14 ← A4@D8A4!!"�4="�� (� )
3: ?23 ← A4@D8A4!!"�4=%�� (<14)
4: while E(<14) ≠ E(?23) do
5: <14 ← A4@D8A4!!"�4="�� (� )
6: ?23 ← A4@D8A4!!"�4=%�� (<14)
7: end while
8: C~? ← 64C�=?DC)~?4 (<14)
9: 8=EB ← A4@D8A4!!"�4=�=E>20C8>=B (C~?)

10: B4;42C43�=EB ← B4;42C (8=EB(C>A4 [C~?]) + 8=EB
11: 8=EB(C>A4 [C~?] .033 (8=EB)
12: while selectedInvs.isNotEmpty() do
13: 8=E ← B4;42C43�=EB.?>? ()
14: if E(?23, 8=E) ≠ E(<14, 8=E) then
15: return difference
16: end if
17: end while
18: end function

{under-mutate Rust programs}

In each mutation round, rust-twins randomly selects a mutation
action prompt. If the prompt requires two programs (source and
destination), rust-twins randomly picks another program from the
seed set as the second input. After preparing the inputs, it replaces
the placeholders in the query template with the mutation action
prompt and the selected programs. Notably, we do not design an
iterative querying mechanism for mutation, such as re-querying
if the programs produced by the LLMs are uncompilable. In our
opinion, this approach benefits the testing of the error handling
component of rustc when the mutation results in invalid output.

3.4 Macroize
Finding errors in rustc doesn’t end with generating data and de-
tecting crashes. To ensure the correctness of the compiled results,
we need to compare the behaviors of the compiled artifacts. How-
ever, the challenge lies in collecting pairs of code that have the
same behaviors but different implementations.

rust-twins tackles this challenge through three steps in the
macroize component. First, we use LLMs to rewrite a Rust function
into both an MBE macro and a PCD macro. The goal of these two
macros is to produce identical code but in different ways. Next, we
leverage a behavior assessment to ensure these two macros expand
to the same HIR for the same arguments. To achieve this, we design
default macro arguments covering all token types to expand these
two macros into HIR. If the expanded HIRs differ, rust-twins
returns to the rewriting phase and prompts LLMs to regenerate the
macros. Finally, if the HIRs are the same, rust-twins generates ten
macro invocations for each macro using LLMs. In the differential
checker, rust-twins reports a potential error if differences exist in
the ten expanded HIRs.
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Table 1: Mutation prompts of rust-twins

# Type Short Name Prompt
1

Rust-specific

LIFETIME Change certain function types to references, ensuring to add the corresponding lifetime annotations. If any types are
currently missing, please add them.

2 OUTLIVE Modify function types to use references where appropriate and add the corresponding lifetime annotations. If multiple
lifetime variables are present, establish an outlive relationship between these variables. If there are no existing lifetime
variables, introduce additional reference types and lifetime variables, and create an outlive relationship for them.

3 OWNERSHIP Make the ownership of this function more complex by transforming and swapping the positions of two statements.
4 UNSAFE Change a part of this function body to use unsafe block. Some references should be changed to raw pointers.
5

DIE

REPLACE-AP Select a piece of code and replace it with new code, the selected code serves no structural purpose
6 USE-VAR Locates a statement block (e.g., the body of an if statement, a function or simply the global region) and randomly

selects a code point inside the block for insertion. Next, generates a new expression statement by using the existing
variables declared at the point.

7 INTRO-VAR Insert the declarations of new variables at random code points, the variable is initialized by an expression.
8

GrayC

DUPLICATE Duplicate a statement within the same block excluding variable declarations.
9 EXPAND Expand sub-expression with other sub-expressions from the corpus program; e.g. in an assignment or loop condition.
10 REPLACE-BY-CONSTANT Replace an expression with a random valid constant expression of the same data type.
11 FLIP-BIT Flip a bit in a constant expression.
12 REPLACE-DIGIT Similar to Flip-Bit but on the number’s decimal representation: either flip the sign or change a single digit.
13 CHANGE-TYPE Change the type of an expression (short, long, unsigned, float, etc.).
14 REPLACE-UNARY-OPERATOR Replace unary operator with an assignment using the same variable
15 FLIP-OPERATOR Replace one operator with another (arithmetic operators).
16 INJECT-CONTROL-FLOW Add a break, continue or return statement inside a loop. The statement is guarded by a condition based on an auxiliary

loop counter so that it is only invoked on certain iterations.
17 REPLACE-FUNCTION-BODY Replace the body of a function with that of another function with the same number of arguments.
18 COMBINE FUNCTION Combine the body of a function with another function with the same number of arguments, either by concatenating

bodies or interleaving their statements.

Table 2: Default inputs for each token type. (TT is short for
Token Type.)

TT block expr ident item lifetime meta tt
Value {1} 1 a fn a() {} 'a #[a] 1

TT pat path literal stmt ty vis /
Value a a 1 let a = 1; i32 pub /

Algorithm 1 details how rust-twins generates macros. As our
goal is to use LLMs to generate two identical behavior macros
from single Rust function, we provide the following prompt to
the LLMs: ”I have a piece of Rust code. Please write a Rust macro
to generate this code. There are some requirements for the generated
macro: 1. The macro name is ’mdriver’. 2. The macro type is a macro
by example. 3. The macro is a function-like macro. 4. The macro has
only one parameter. 5. Do not forget export the macro, such as using
’#[macro_export]’. 6. The code should be wrapped by Rust code block.
7. Do not use any external crate except syn and quote”. In this prompt,
we specify seven requirements to facilitate easy expansion and error
prevention, such as a universal macro name and a single parameter.
In the motivating example, shown in Figure 4e and Figure 4f, the
generated macros have the same name and input parameters

Due to hallucination [39] of LLMs, the generated macro might
miss some of the given requirements. To ensure the dual macros
have same behavior, rust-twins compares the expanded results
with simple inputs to assess the generation correctness. From lines 4-
7, rust-twins repeatedly prompts LLMs to generate MBE and PCD
macros until the expanded results match. The function E expands
the given macro with a default argument. We revise 13 default
arguments for E to cover all possible token types, details are shown

in Table 2. We intentionally use simple inputs as the default for
filtering out inequivalent generations. The rationale is based on an
observation that inequivalences are obvious and can be filtered out
easily using simple inputs. If we use more complex test inputs, we
may trigger real bugs instead of detecting inequivalences, which
could cause false negatives. For instances, in Figure 4e and Figure 4f,
rust-twins use the default argument 1 to expand the dual macros
since the input type in Figure 4e is expr.

Once the pair of macros is confirmed, rust-twins attempts to
extract the input token type fromMBE instead of PCD at line 8, since
the former exhibits an explicit type signature while PCD’s input
type is always TokenStream. To reduce the cost of the LLM token fees,
rust-twins reuses historically generated invocations, which are
stored and categorized by their corresponding types. In lines 9-10,
rust-twins requires the LLMs to generate invocations that satisfy
the extracted type of MBE, selects K invocations from the invocation
store by typ, and combines the generated invocations to construct
selectedInvs. We provide the following prompt to the LLMs: ”Please
give me an invoke for this macro, There are some requirements for the
generated invocation:1. 10 differnet macro invocations are needed. 2.
The invocation parameter diversity should be strong enough. 3. The
code should be wrapped by “‘ rust “‘. Here are the macro type: MBE
input type”. Consequently, the newly generated invocations are
saved in invsStore at line 11. In lines 12-17, rust-twins expands
PCD and MBE with these inputs and compares the expanded HIR
to identify any differences. For motivating example, the invocations
listed in Figure 4d, it covers many features of Rust, such as range,
array, Box, etc. Consequently, rust-twins gets two expanded results
by the macro invocation mdriver(0..10)!, as shown in Figure 4e and
Figure 4f. By comparing the dumped results, rust-twins identifies
a difference as a potential bug in rustc.
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4 EVALUATION
Research Questions. We conduct experiments to evaluate rust-
twins by addressing the following questions:

• RQ1: Can rust-twins generate a sufficient amount of valid Rust
code?
• RQ2: How effective is rust-twins in testing rustc?
• RQ3.What are the root causes of detected differences and crashes?

Implementation. We implemented rust-twins using rustc ver-
sion 1.80.0-nightly, the Rust libfuzzer binding libfuzzer-sys version
0.4.7. For seed prioritization, we implemented the nondominated
sorting algorithm in C++ by modifying the ChooseUnitToMutate func-
tion in libfuzzer. rust-twins mutates and rewrites Rust programs
using the GPT-4-turbo API. Since MBE’s pattern arms are difficult
to parse with the crate syn [2], rust-twins extracts the token type
using regex. The generated macro is expanded into HIR, which is
then dumped as a string for comparison. The compilation flag for
expansion and dump is -Z unpretty=hir.
Baseline techniques. Two techniques are chosen as our experi-
mental baseline. One of them is RustSmith [32], a generative com-
piler fuzzing technique that generates Rust code through the Rust
grammar and carefully maintains ownership during generation.
The other tool is libFuzzer [4], a byte-level mutation-based fuzzer
without initial corpus.
Evaluation Setup. Our experiments are performed on a Linux
server with Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz and distri-
bution Ubuntu 20.04. rust-twins’s initial corpus is a collection of
single-file programs from rustc’s unit tests. We filter the uncompi-
lable and crash-causing programs, remove all comments, newlines,
and blanks from each file to reduce the LLM token fees. We set the
temperature parameter at 0.5 for the GPT-4o.
Metrics. Four metrics are designed to evaluate rust-twins against
other techniques.

• Stillborn rate. To quantify the Rust mutation and rewriting
capability of LLMs, we compute the stillborn rate of both mutator
and macroize components.

(' = 1 − |+0;83 |
#&D4A84B

× 100% (1)

Here,+0;83 refers to the valid seeds or rewritten macros, |+0;83 |
is their count, and #&D4A84B is the number of requests made to
the LLMs. In this paper, stillborn artifacts are Rust programs
with invalid semantics or syntax, or macros that cannot pass our
assessment. The poorer the generation capability of the LLMs,
the higher this rate will be.
• Code diversity. To evaluate the range of Rust features covered

by the generated code, we sample 1,000 files from the program
set produced by rust-twins and rustsmith respectively. We
then counted the number of different kinds of Rust AST nodes,
categorized into 167 types by the crate syn version 1.0.66. The
greater the range of types a seed set has, the better its diversity.
• Code coverage. Tomeasure whether our mutation strategies can

generate effective and sufficient seeds to achieve higher coverage
than the state-of-the-art tools, we compute two types of coverage:
overall coverage and module coverage. Overall coverage records

Table 3: Stillborn rate. (SR is short for stillborn rate, and
rust-twins<DC and rust-twins<02 denote the mutation
component and macroize component of rust-twins respec-
tively)

'DBC(<8Cℎ !815 DII4A rust-twins<DC rust-twins<02

Valid 20712 0 6048 3552
Invalid 68 335540 16800 3420
Total 20784 335540 22848 6972
SR 0.33% 100% 73.5% 49%

the line coverage of the entire rustc per hour for rust-twins
and baseline techniques. Additionally, to determine the coverage
improvement for each module in rustc, we compute the line
coverage of each module for rust-twins and rustsmith.
• Differences and crashes. We collect the expansion differences

between MBE and PCD and document rustc crashes. Each de-
tected case is analyzed, and potential bugs are reported to rustc
developers via GitHub issues.

4.1 Experimental Results
4.1.1 RQ1: Can rust-twins generate a sufficient amount of valid
Rust code? To evaluate the performance of rust-twins, we initiate
a 24-hour fuzzing campaign.We compare the stillborn rate and code
diversity of rust-twins against the baseline techniques, rustsmith
and libfuzzer. Consequently, we discuss the generation cost and
the compilation errors of invalid programs.
Stillborn rate. As indicated in Table 3, rust-twins successfully
generates 6,048 Rust programs in themutation component and 3,552
pairs of macros in the macroize component. Since the rewriting
task is easier than the mutation task for GPT-4o, the SR of macroize
is better than that of the mutation component. Although libfuzzer
can generate the highest number of Rust programs, it cannot gen-
erate any valid Rust programs for rustc with its random byte-level
mutation strategy. rustsmith has the best SR, 0.33%, nearly gener-
ating correct Rust programs. Our analysis of the invalid programs it
generated shows that the most common error is missing identifiers.
Despite this, rustsmith demonstrates impressive performance in
terms of generation speed. However, the code it generates tends to
be rigid, a point that we discuss in the code diversity paragraph.
Code diversity. To measure the diversity of generated Rust pro-
grams, we count the number of AST nodes by their type. As shown
in Figure 5, we compute the percentage of each node type for both
rust-twins and rustsmith. The larger the area the tool occupies,
the higher the percentage of that node type. In total, rust-twins
generates seeds that cover all node types, while rustsmith gener-
ates only 84 types and misses 83 types. The largest differences in the
number of generated AST types between rust-twins and rust-
smith are found in Item and Expr. rust-twins generated 7.68 times
more ItemAST node than rustsmith due to its tendency to generate
more functions and function calls. Conversely, rustsmith gener-
ates 21% more Expr AST node than rust-twins. For both of them,
the top five node types are Span, Ident, Expr, PathArgument, PathSegment,
and Path. However, the standard deviation of rust-twins outper-
forms that of rustsmith by 8.3%. The node type distribution re-
sults show that the diversity of rust-twins is better than that of
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Figure 5: The AST type distribution of generated code of rust-twins and rustsmith.

rustsmith. Consequently, rust-twins can increase the number
of generated programs by easily increasing the processes while
maintaining good diversity.
Generation cost.To ensure the generated Rust’s correctness, rust-
twins sends 22848 requests to LLMs, and successfully generates
6048 valid Rust programs for rustc within 24 hours with the cost
of $48.1 for querying the GPT-4o in total.
Invalid programs. We sampled and analyzed 100 files from the
mutation and macroize components, categorizing the root causes
of invalid programs into five types as follows:

• Unresolved Symbols: The majority, 40 cases, had unresolved
symbol errors, including the use of third-party crates (26) and
unresolved symbols.
• Syntax Errors: 27 invalid programs had syntax errors, including

incorrect attributes and inappropriate identifier modifiers.
• Type Errors: 17 cases involved type mismatches and incorrect

generic function usage.
• Safety Rules Violations: Only 5 cases violated safety rules,

such as returning variables with shorter lifetimes and lifetime
type mismatches.
• Other Errors: The remaining 11 cases had other errors, such as

network issues, environmental requirements, and pattern errors.

The analysis results show that the majority of generation errors
for rust-twins are due to unresolved symbols. GPT-4 tends to
generate code that depends on popular crates not included in our
compilation environment.

Answer to RQ1: rust-twins can mutate and rewrite Rust
programs with correct syntax and semantics by GPT-4o. Addi-
tionally, the generated programs exhibit greater diversity for
compiler testing compared to grammar-based generators. The
majority of generation errors are due to unresolved symbols.

4.1.2 RQ2: How effective is rust-twins in testing rustc? Figure 6
shows the line coverage achieved in rustc by the baseline tech-
niques rustsmith (orange), libfuzzer (gray) and our tool rust-
twins (blue). We sampled and merged the coverage per tool hourly
by grcov and lcov.
Overall coverage. Figure 6 indicates that libfuzzer achieves the
lowest coverage, with only 24,884 lines covered after 24 hours of
fuzzing. Additionally, its coverage saturates within the first hour.
Despite libfuzzer efficiently producing inputs for the remaining
time, the increase in coverage is minimal. Over the 24-hour fuzzing
period, it covers only 700 more lines than it did in the first hour.
As shown in Figure 6, the coverage of rustsmith is similar to that
of libfuzzer. It covers 100287 lines in the first hour and does not
increase significantly during the remaining fuzzing period. Our
tool, rust-twins, achieves the highest overall coverage, with more
than 198470 lines covered after 24 hours of fuzzing, which is 98183
more lines than rustsmith. Due to its mutation strategies and seed
prioritization, rust-twins can discover more code regions and
increase coverage compared to baseline techniques after the first
hour of fuzzing.

Although libfuzzer does not generate any valid inputs for rustc,
it still covers 24,884 lines. It is likely that rustc has many error
analysis, recovering and reporting features, and the numerous in-
valid inputs achieve substantial code region of error-handling in the
front-end of rustc. Since rustsmith is a grammar-based generator
without runtime information feedback, its rigid generation pattern
fails to cover rare cases and deep code region of rustc. Despite its
effective generation strategies for producing valid Rust programs,
the limitation of poor diversity makes it difficult to continually
increase coverage throughout the entire 24-hour fuzzing period.
Module coverage. In Figure 7, we selected the top 25 highest cover-
age modules and highlighted in orange those modules where rust-
twins achieves more than 35% higher coverage compared to rust-
smith. The IR lowering-related modules, ast_lowering, hir_typeck,
mir_build, and hir_analysis, show significantly higher coverage, in-
dicating that rust-twins can generate better diversity programs
and perform more efficient HIR and MIR lowering than rustsmith.
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Figure 6: rust-twins and baseline techniques line coverages
over 24h of fuzzing.

Notably, rust-twins can generate more built-in macros such as
println, as evidenced by the 37.01% higher coverage in builtin_macros.
In the middle-end, rust-twins also has 26.44% higher coverage.
However, in the back-end, rust-twins achieves only 10.17% and
10.45% higher coverage in the codegen_llvm and codegen_ssa modules,
respectively. We believe this is because many programming lan-
guage features are eliminated before code generation, and the lower
the IR, the fewer IR types there are. Additionally, due to themacroize
component, rust-twins outperforms rustsmith in macro-related
modules such as expand and metadata.

Answer to RQ2: rust-twins achieves the highest overall
coverage, demonstrating that its fuzzing strategies are signifi-
cantly more effective than baseline techniques. Furthermore,
rust-twins explores more coverage across all modules in
rustc. Specifically, rust-twins outperforms rustsmith in
macro-related modules due to the macroize component.

4.1.3 RQ3: Root Cause of Differences and Crashes. We analyzed
and reported some rustc differences to the Rust team using Github
issue, 8 of which have been confirmed as rustc bugs.We summarize
some typical differences and crashes as follows.
Different termination timing of expansion. Due to the differ-
ences in the expanded workflows of MBE and PCD, the timing of
expansion termination also varies. rust-twins generates multiple
macro invocations sequentially within a single file. If any invo-
cations result in type errors, the subsequent ones are no longer
expanded in PCD. However, macro invocations in MBE are inde-
pendent of each other, meaning a macro expansion error does not
affect the other expansion processes. Therefore, MBE can expand
more macros than PCD when errors occur. We do not consider this
difference to be a bug.
Different dump format. We compare the HIR dump results char-
acter by character. If differences are detected, rust-twins indicates
a potential error. However, there are some false positives because
the dump formats of PCD and MBE are not identical. Specifically,
comments, blanks, and newlines are not preserved in the HIR, and
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Figure 7: Module coverage comparison for rust-twins and
rustsmith. (Larger areas indicate more total lines in those
modules. The percentage number denotes how much higher
coverage rust-twins achieves compared to rustsmith.)

rustc attempts to guess their positions when dumping. Unfortu-
nately, the guessing strategies for PCD and MBE are different.
Different scoping. The significant difference between PCD and
MBE is variable scope. MBE is a hygienic macro with static variable
scoping, while PCD has dynamic scoping. Before MBE expansion,
rustc resolves the actual arguments at the call site. In contrast, for
PCD, rustc first expands the macro and then resolves the actual
arguments in the expanded results. Therefore, due to these differing
variable scoping, MBE raises more symbol undefined errors than
PCD. This difference does not indicate a bug in Rust.
False positive in equivalence assessment. Since LLMs are black
box tools with a randomized mechanism, the code it generates is
unstable and sometimes ignores the user’s requirements. As a result,
the two generated twin macros may exhibit different behaviors in
detail. For example, in Rust, both to_string and stringify! are
used to convert an object to a string. However, a regular type token
such as &i32 is stringified as ”& i32” by to_string and as ”&i32”
by stringify!. The simple default inputs cannot discern the slight
semantic difference between these two functions. Fortunately, we
found only 1 false positive in the equivalence assessment out of 229
differences in our experiments.
Bugs. In total, we have detected 12 bugs for rustc, and 8 of them are
confirmed or fixed. The found bugs are mainly due to the following
root causes.

• Incorrect implementations (3). We classify two types of im-
plementations that might cause incorrect expansion. First, the
expansion rules directly impact the correctness of the macro. Sec-
ond, the whole translation correctness of rustc affects the expan-
sion result since PCD is an actual function and must be executed
during the expansion stage. More specifically, the mechanism
of PCD involves the entire compilation process from parsing to
code generation. PCD will be compiled to a binary and executed
to produce a token stream as the macro expansion result. Thus,
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#![feature(generic_const_exprs)]
#![allow(incomplete_features)]
trait Foo<const N: usize> {
    type Assoc: Default;
}
fn foo<T, const N: usize>(_: T) -> <() as Foo<{ N + 1 
}>>::Assoc
    where (): Foo<{ N + 1 }>,
{
    let mut _q = Default::default();
    _q = foo::<_, 2>(_q);
    _q
}

The trait 
solver is 

stuck at this 
point.

Figure 8: The detected infinite compilation bug.

trait Trait<T> {}
fn bug() {
    macro_rules! m {
        () => {
            _
        };
    }
    struct S<T = m!()>(m!(), T)

where T: Trait<m!()>;
}

Compiler panic:
m!() is 

expanded as “_”
without source
information

Figure 9: The detected panic of assertion.

any general setting bugs in the compilation would result in in-
correct expansion results of PCD, causing the difference between
the results of PCD and MBE. One example of this type of bug is
shown in Figure 4 as a motivating example.
• Unterminated compilation (2). Rust provides compile-time

calculation features to support its zero-cost abstractions. How-
ever, implementing these features poses a significant challenge
for the compiler. We discovered that rustc might not terminate
when compiling a program with large types, such as &'static
[i32; 32768]. Additionally, the integer computation in gener-
ics can cause infinite compilation. For example 1, as shown in
Figure 8, the generic type parameters are constant expressions N

and N + 1, which lead to infinite compilation when the generic
type inference exists.
• Panic of debug assertion (3). In rustc, each HIR node has a

span that records source code information, and this span should
be non-empty during compilation after the parsing stage. We
found that some edge cases can trigger the non-empty checking
assertion in rustc’s debug mode. These cases were combined
and generated by LLMs from rustc’s original unit test cases. As
shown in Figure 9, the macro m is expanded as the type place-
holder ”_”, which turns the type T = m()! into T = _. However, the
placeholder lacks any source code information, causing a com-
piler panic. 2

1https://github.com/rust-lang/rust/issues/126106
2https://github.com/rust-lang/rust/issues/116502

Answer to RQ3: rust-twins detects 8 confirmed and fixed
bugs. A difference might be caused by different termination
timing of expansion, dump format, variable scoping, gener-
ated code and expansion implementation. A crash might be
caused by the unterminated compile-time calculation and de-
bug assertion of the parser.

5 RELATEDWORK
Rust compiler testing. Due to the aforementioned challenges,
few existing works focus on rustc testing. The state-of-the-art
differential testing tool, rustsmith[32], is the first randomized
generator of Rust programs suitable for differential compiler testing.
Another work[13] addresses typechecker defects in rustc through
a CLP-based code generation approach.
Differential testing. In recent years, many differential testing
approaches have been proposed for compiler testing to resolve
the test-oracle problem. These approaches can be roughly catego-
rized into intra-compiler and inter-compiler differential testing. In
intra-compiler differential testing, the same compilers with differ-
ent configurations or versions are grouped as an oracle. Kitaura
et al.[18] use multiple older versions of a compiler to detect per-
formance bugs in the latest version. Some works[8, 35] attempt
to couple JIT-enabled and JIT-disabled compilers with different
configurations and trigger seeds to identify optimization bugs.

In inter-compiler differential testing, multiple compilers are
taken as an oracle. Csmith[38] collects different versions of LLVM
and GCC and compares the compilation results produced by these
compilers. GrayC[14] introduces a novel post-processing tool that
transforms programs to produce a single output, which can be eas-
ily compared across different compilers. Beyond C/C++, there are
various implementations of JVM andWebAssembly [27]. Numerous
JVM fuzzers [11, 12, 41] generate class files to trigger differences be-
tween JVMs. Similarly, some fuzzers [17, 42] generateWebAssembly
instructions to detect discrepancies among multiple WebAssembly
engines.
Metamorphic testing. The test-oracle problem can also be ad-
dressed by metamorphic testing [10]. In short, the core of this
approach is to construct metamorphic relations, which can be used
to generate equivalent input data for the programs under test. In
compiler metamorphic testing, researchers generally devise code
transformers to generate programs that are seemingly different but
actually equivalent [25].

Many transformers have been proposed in previousworks. Orion,
Athena, and Hermes [19, 20, 33] attempt to modify seeds in a
semantic-preserving manner by deleting and inserting statements
in dead code. Besides static approaches, other researchers derive
metamorphic relations through runtime information [15, 36]

Furthermore, there are stronger code transformers that can be
performed without considering the context of the transformed
program. Mettoc [34] proposed equivalent expression templates,
equivalent statement manipulations, and equivalent control flow
transformations that can always generate equivalent programs for
any seeds. MetaFuzz [40] is designed for a specific programming
language and implements six identically equivalent mutation rules
based on new programming language features.

https://github.com/rust-lang/rust/issues/126106
https://github.com/rust-lang/rust/issues/116502
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6 DISCUSSION
Metamorphic Testing vs Differential Testing. The key differ-
ence between metamorphic testing and differential testing is the
existence of multiple implementations in the former and metamor-
phic relations in the latter. Consequently, there are two reasons
why we claim that rust-twins belongs to differential testing. First,
we generate identical macros as two different implementations with
the same behavior and use the actual arguments of expansion as
inputs to test their correctness. In contrast, in metamorphic testing,
the generated seeds are used as inputs directly for the programs
under test. Second, there are no well-defined metamorphic relations
to generate equivalent seeds in our approach since the generation
task is done by the LLMs.
Limitations of practice. As a testing technique, its throughput is
one of the significant factors in triggering potential bugs. However,
rust-twins, driven by LLMs, suffers from the computing power
required for inferencing and cannot generate large volumes of input
data for testing tasks. Furthermore, while the LLMs can mutate and
rewrite Rust programs to help produce valid Rust programs, the
stillborn rate remains unsatisfactory. We defer the augmentation of
rust-twins to improve its generation success rate through prompt
engineering and by fine-tuning a Rust-specific LLM.

7 THREATS TO VALIDITY
Internal. The internal threats come from three aspects. First, we
only use the lifetime complexity while there exist many other gen-
eral code complexity metrics such as McCabe’s Cyclomatic Com-
plexity [26] and Halstead Complexity Measures [16]. We leave
the metrics augmentation in the future. Second, for the mutation
component, we use only four Rust-specific mutators tailored to the
language’s unique features. There are other features we have not
yet considered, such as trait objects and higher-rank trait bounds.
The third threat is the lack of experiments using different LLMs
instead of GPT-4o to mutate and rewrite in rust-twins.
External. One of the external threats is the hallucination phenom-
enon of large language models (LLMs). Although we designed the
assessment component to reduce the impact of hallucination, it
can still generate inconsistent macros in the macroize component.
Furthermore, we identify differences by comparing the dumped
expanded macros in HIR, which can result in more false positives
if the dumped format changes. For macro systems, there is a risk
that our approach may not detect widespread defects in rustc due
to the instability of the PCD expansion mechanism.

8 CONCLUSION AND FUTUREWORK
We have presented the design of our LLM-driven differential test-
ing approach for rustc and detailed its implementation through
rust-twins. Our evaluation demonstrates that, under strict static
checking of rustc, rust-twins can generate a sufficient number
of Rust programs to achieve the highest coverage for rustc com-
pared to other baseline techniques. Additionally, rust-twins has
detected and reported numerous differences and crashes to the
rustc developers.

In the future, we plan to fine-tune a Rust-specific mutation LLM
to address the majority generation errors (unresolved symbol and

syntax errors), rather than using the universal LLM GPT-4o, to
better support Rust fuzzing and differential testing tasks. Further-
more, we aim to apply rust-twins to other software that accepts
Rust programs as input, such as Rust Analyzer, to enhance the code
quality of the entire Rust community.
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