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Abstract—Accuracy and rigor are vital indicators of the spec-
ification document, especially for the ARINCG653 aviation
industry standard. A high-quality standard or specification
should clearly depict the system behaviors yet leave no fatal
vulnerability. Formal verification could definitely help achieve
this goal, but it requires intensive professional domain knowl-
edge and overwhelming manpower. Recently, fast-growing
natural language processing (NLP) techniques do well in
harvesting knowledge extraction for the downstream tasks.
However, since knowledge about an entity is scattered over
heterogeneous contents (plain text, pseudocode, XML, etc.)
for almost all such standard documents, a single content or not
all contents cannot account for the entire knowledge. To this
end, we propose a novel and practical approach to construct
the Ontology of ARINC653 and extract the logical guards.
Technically, we combine the NLP techniques with domain-
specific naming and lexical rules for entity recognition in
Ontology and then apply information extraction and relation
formalization for relation extraction (in terms of guards). We
evaluate the quality of our Ontology against that induced by
the domain professor. We further apply this approach to the
historical ARINC653 standards and evaluate the performance.
Results show that our approach indeed helps construct knowl-
edge integration and aid for specification understanding.

Keywords—ARINC653; NLP; heterogeneous knowledge inte-
gration; inconsistency detection

1. INTRODUCTION

A real-time operating system (RTOS) is an operating system
(OS) that can process data as it comes in and make rapid
responses to external events within a specified time. The stan-
dard or specification of an RTOS should be satisfied, especially
for the industrial aviation ARINC653 O/S [1] which has a
much stricter need for timeliness. Drafting ARINC653-like
standards/specifications are highly expert-required, but still
error-prone. During the evolution of the ARINC653 standards,
hundreds of action items were proposed and taken into the
standards; nevertheless, errors appeared in each release of the
standards. For example, Zhao et al. found some critical errors
in the ARINC653 standard and confirmed their existence in
some ARINC653 OSes in the work [2]. Hence, to make sure
the ARINC653 OS to be highly trusted, the corresponding
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standard is desired to be logically explicit and flawless.
Documented standards have been formalized and verified to
ensure their correctness and improve the assurance of critical
systems based on them. The ARINC653 standard has been
fully formalized and verified by Event-B [2]. The Vellvm
project provides a mechanized formal semantics of LLVM
IR language, which is a standard for compilers’ intermediate
representation, using the COQ interactive theorem prover [3].
Numerous approaches have been proposed to formally specify
and verify service compositions [4], such as WS-BPEL [5],
a standard for business process execution language for web
services. Existing works manually translate the standards into
formal models and conduct verification by theorem proving or
model checking. After all, these methods are promising, but
they face two major challenges in practice. First, verification-
based methods are in general costly and time-consuming.
Though automated formal verification has been studied in
recent years [6], automated creation of formal models (or
specifications) from informal and semi-structured standards
are still challenging. Second, most existing methods focus only
on code or text description for analysis and verification. Thus,
they fail to consider the content scatted in heterogeneous data
formats in ARINC653 standard (see § 2-B).

In this study, the motivation is to bridge the above gap by lever-
aging the natural language processing (NLP) techniques for
knowledge understanding. Important knowledge in ARINC653
standard is scattered in heterogeneous contents (e.g., plain text,
pseudocode, and XML) so that it is heavily manpower-required
to integrate them. On the other hand, knowledge and further
Ontology of standards can help improve the consistency of
the standard document and the linking between semi-formal
and formal content of the standard document for safety-critical
avionics systems [7]. To resolve this concern, we propose a
novel approach based on NLP tools to reach a comparable
performance with minimum required domain expertise.
Technically, given an extra IT glossary and some potential
entities provided by human experts (see § 3), our approach can
parse the ARINC653 document and conduct three key steps of
processing, including named entity recognition (NER), relation
extraction (RE) and relation formalization. Finally, it outputs a
refined Ontology model (showing entities, entity attributes and
entity relations) and the formalized entity relations in logical
guards (first order logic). Besides, it yields an analysis report



about the quality of ARINC653 specification, such as typos,
confusing alias, inconsistent type definition, etc.

To our best knowledge, we make the first attempt to apply
the NLP tools to extract knowledge for ease of understanding
and formalizing the documented standards like ARINC653. We
conduct an evaluation on three versions of ARINC653 (see
§ 5). Results confirm the quality of our Ontology model, prove
the accuracy of the analysis approach, and show the usefulness
of the formalized relations in logical guards.

To sum up, we make these contributions in this study:

« Implementing automated knowledge extraction from het-
erogeneous data formats in the ARINC653 standard.

o Combining NLP techniques for accurate entity recog-
nition and relation extraction from heterogeneous data
formats.

o Yielding useful Ontology model and logical guard for
understanding the ARINC653 standard.

« Pointing out 8 typos and 21 inconsistent issues legacy in
ARINC653 standard. We form them as an errata report
to ARINC Industry Activities and get their acceptance.

2. BACKGROUND
2.1 ARINC653 Standard

ARINC653 [8] aims to provide a standardized interface be-
tween a given Partitioned operating systems (POS) and appli-
cation software, as well as a set of functionalities to improve
the safety and certification process of safety-critical systems.
The latest version of ARINC653 published in 2019' is orga-
nized in six parts. Part 1 specifies the required services; hence,
ARINC653 compliant POSs are mandated to implement this
part. Other parts are overview, extended services, conformity
test, subset services, and required capabilities. The last three
versions of ARINC653 Part 1 are P1-3 (Part 1 Version 3)
published in 2010, P1-4 in 2015 and PI1-5 in 2019. Part 1
defines the system functionality of POSs by natural language
descriptions and service requirements as APplication EXec-
utive (APEX) interface by the APEX service specification
grammar which is in semi-formal as a combination of natural
and structural languages. ARINC653 P1-5 defines six types of
system functionalities, i.e. Partition Management, Process Man-
agement, Time Management, Memory Management, Inter-partition
Communication, Intra-partition Communication and Health Monitoring.
In particular, the scheduling specified in ARINC653 is a real-
time and two-level scheduling, including partition scheduling
and process scheduling. The deadline time (a delay time or a
specified budget time) is usually utilized in scheduling model.
Notably, in this study, we mainly focus on part 1 (the content
of 300 pages in version 5) of the ARINC653 standard.

2.2 ARINC653 Partl Representation

To provide more details for better guidance, the specification
organizes its contents in heterogeneous formats such as plain
text, pseudocode, XML-schema, etc. Without any exception,
the Partition Management part has relevant content in three

Uhttps://www.aviation-ia.com/file/3925/download?token=B0Z8FoMg
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VARIABLE ATTRIBUTES (defined and controlled during run-time)
1. Lock Level — denotes the current lock level of the partition.
2. Operating Mode — denotes the partition’s execution state.
3. Start Condition — denotes the reason the partition is started.

(a) VARIABLE Attributes (from p.15)

IDLE: In this mode, no application defined partitions are executing within the partition’s
allocated partition windows. The partition is not initialized (e.g., none of the ports
associated to the partition are initialized), no processes are executing, but the
partition windows allocated to the partition are preserved.

(b) One state of Operating Mode: IDLE (from p.18)
Figure 1: Plain text: describing attributes of Partition Management (class
attributes in OOP implementation)
type PARTITION_STATUS_TYPE is record

IDENTIFIER PARTITION_ID_TYPE;
PERIOD !
DURATION

LOCK_LEVEL LOCK_]

OPERATING_MODE_TYPE;
START_CONDITION_TYPE;

OPERATING_MODE
START_CONDITION
end record;

for PARTITION_STATUS_TYPE use record at mod 8;

PERIOD at 0 range 0..63;
DURATION at 8 range 0..63;
IDENTIFIER at 16 range 0.31;
LOCK_LEVEL at 20 range 0.31;
OPERATING MODE at 24 range 0.31;
START_CONDITION at 28 range0..31;

end record;

(a) PARTITION_STATUS_TYPE (from p.137)

procedure SET_PARTITION_MODE
(OPERATING_MODE  : in OPERATING_MODE_TYPE;
RETURN_CODE : out RETURN_CODE_TYPE) is
error
when (OPERATING_MODE does not represent an existing mode) =>
RETURN_CODE := IVALID_PARAM;
/* omit several lines  */
normal
set current partition’s operating mode := OPERATING_MODE
if (OPERATING_MODE is IDLE) then
shut down the partition;
if (OPERATING_MODE is WARM_START or OPERATING_MODE is COLDE_START) then
inhibit process scheduling and switch back to initialization mode;
if (OPERATING_MODE is NORMAL) then
inhibit the partition;
activate the process scheduling;
RETURN_CODE := NO_ERROR;
end SET_PARTITION_MODE;

(b) SET_PARTITION_MODE (from p.53)
Figure 2: Pseudocode: describing the behaviors of Partition Management
(class methods in OOP implementation)

heterogeneous formats — plain text in Figure 1 to describe
the attributes (class attributes in OOP [9] implementation),
pseudocode in Figure 2 to describe its behaviors (methods
and code in OOP implementation), and XML-Schema files in
Figure 3 to describe the structure of each part and relations
among parts (analogical to class structure and their relations
in OOP implementation). As descriptions for attributes and
behaviors of each part are distributed in these three heteroge-
neous formats, we should integrate such information together
to acquire the entire knowledge.

2.3 Challenges

In practice, we encounter the following challenges:

1) Direct application of NLP tools is not enough to extract
useful information from the heterogeneous formats. As il-
lustrated, Figure 1 shows an example of using plain text for
attribute definitions of Partition; in Figure 2 pseudocode con-
tains variable (or structure) declaration and the operations
of pseudocode for Partition.Operating_Mode; and Figure 3 is
the structural definition in XML-Schema for entity Partition



1<xs:element name="Partition” maxOccurs="unbounded’>>
2 <xs:attribute name="Identifier” type="IdentifierValueType”
use="required’™>
<xs:annotation>Identifier of the partition</xs:annotation>
</ xs:attribute>
<xs:attribute name="Name” type="NameType” use="required’>
<x nnotation>Name of the partition</xs:annotation>
</ xs:attribute>
/+omit similar definitions for Duration and Period =/
<xs:element name:"MemnryReginns’
<xs:annotation>Memory Region Mapped into the
partition</xs:annotatiom>
<xs:complexType>
12 <xs:element name="MemoryRegion”
type="A653_MemoryRegionType” maxOccurs="unbounded” />
</xs:complexType>
</xs:element>
<xs:element name="PartitionPorts’>
<xs:annotation>Ports of the partition</xs:annotation>
<xs:complexType>
<xs:element name="PartitionPort” type="PortType”
maxOccurs="unbounded” />
</xs:complexType>
</xs:element>
21</ xs:element>

Figure 3: XML-Schema (from p.207)
and its related entities. However, the traceability of the
same entity (e.g., Partiton) among heterogeneous formats
is not explicitly marked. Different name conventions (or
alias) could be applied in heterogeneous formats, which
aggravates this issue. How to find information of the same
entity across different formats is a challenging task.
There are many document quality issues, such as incon-
sistent usage of special symbols (e.g., ‘:’, =, ‘-, etc.),
typos, improper alias, ambiguous references or pronouns.
We find two types of alias among these entity names:
acronym/abbreviation and alias due to others (case sensitive
or hyphen, etc.). Besides, inconsistent phrasing of the same
entity will confuse the audience and hinder the readability.
For example, the term Error Process, which literally means
a Process with error, is an inappropriate presentation —
because its real meaning is the handler for Error Process
(thus a better term should be Error Handler Process). Ob-
viously, directly applying named entity recognition (NER)
tools without proper pre-processing and normalization may
not yield ideal results.
Due to the domain specificity of the ARINC653 standard,
even with entities identified, the entity relations could
be hard to extract by existing relation extraction (RE)
tools. Terms in the ARINC653 standard often differ from
the meanings they have in daily-life documents such as
news or novel. For example, the entity Blackboard here
indicates an area that all Process within the same Partition
can read Message from or write Message to, rather than
the large dark board in daily life attached to a wall and
used for writing. The existing RE tools mainly work
on the daily-life documents (such as biomedicine, news
reports or encyclopedia). As there lacks a large dataset of
documented standards (related to ARINC653) with entity-
relation knowledge well-labeled, it is extremely difficult to
train a domain-specific RE model on supervision learning.
Hence, directly or indirectly applying RE tools may not
help. Finding alternative tools, which work at a more
general level, poses a technical challenge on accurate
relation extraction in domain-specific documents.
To sum up, towards an accurate and automated analysis of
the ARINC653 standard, we propose our novel NLP-based
approach to address these challenges in § 3 and § 4.

2)
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3. APPROACH OVERVIEW

In this section, we depict the basic steps of our approach
towards acquiring knowledge in heterogeneous formats.

3.1 Overall Workflow

Figure 4 illustrates the workflow of our approach. It needs
three types of input: the ARINC653 standard document,
an external dictionary for IT glossary [10] (e.g., containing
acronym and abbreviation) and a list of potential entities
provided by human experts. The output of our approach
includes two parts: the refined Ontology model (with entities
and their relations extracted), the analysis report showing the
grammar issues (e.g., typos) and logic flaws (e.g., inconsistent
type definition or constraint) in the ARINC653 standard.
Overall, our approach consists of the following processing:
@ heterogeneous content processing (step 1-2, see § 4-A), @
entity recognition based on alias clustering (step 3, see § 4-B),
@ relation extraction based on information extraction (step 4,
see § 4-C), and @ relation formalization (step 5, see § 4-D).
We briefly introduce the five steps in Figure 4 as below.

o Step 1: parsing document, in which we follow common
documentation practices (e.g., headings, bullet lists, in-
dention, etc.) to identify the corresponding layout infor-
mation. This step could be used for many ARINC653-like
standards that conceptually follow a similar pattern.

o Step 2: integrating content, in which we put together
the contents parsed from heterogeneous formats (e.g.,
attribute definition in plain text; variable declaration in
pseudocode and XML-Schema types definition). Besides,
we design and implement data structures (similar to Class
in OOP[9]) to store the content no matter from which
format it is extracted.

o Step 3: entity recognition, in which we use the IT
glossary, acronyms in the appendix of the ARINC653,
and the potential entity list to cluster alias in the AR-
INC653 via the ClusterAlias algorithm (see § 4-B). This
algorithm handles similar entity/attribute names due to
case insensitivity, acronym, abbreviation and abuse of
hyphens, typos, and highly similar (calculated by the
Glove word embedding [11] method) noun-chunk.

o Step 4: relation extraction, in which we parse the input
pseudocode and the entity description, and output the sub-
ject—verb—object (SVO) list via the aid of the information
extraction (IE) tool OPENIE4 [12]. Due to repetitions
and redundancy of the information extraction, the SVO
list generated by OPENIE4 also has duplication. So we
propose the IEMerger algorithm (see § 4-C) to identify
the similar or redundant SVOs, simplify and merge them.

o Step 5: relation formalization, in which we convert the
relations in form of SVO into formal formula (i.e., guard
clauses in first order logic). Converting SVO into logic
guards is not a trivial task, for which we propose the For-
malRelation algorithm (see § 4-D) that considers different
SVO structures and outputs corresponding guards.

With the outputs of step 3 and step 5, we could get a list
of entity names as well as a list of merged and refined



Heterogeneous Contents

1. parsing

document [XML—Schema

Appendix
* XML-Schema type definition * Acronyms
* Graphical view of XML-Schema type) ( * Glossary

Pseudocode
* Type declaration

* APEX Service
4. relation
extraction
Relation
* SVO triplet

5. relation
formalization

1
1

Plain Text
* Term definition

* Entity description

2. integrating
content

Data struct
* Object

* Obiject Attribute
Potential
Entities

Entity List

* Entity

* Entity Alias

3. entity
recognition

5., | Guard
* representation patterns
combination

Output

Figure 4: Overview of Our Approach

relations that machines can understand among the entities that
machines also can understand. Based on that, we build the
Ontology model in OWL [13] format via the aid of PROTEGE
[14]. During the parsing and processing of the standard, we
also identify typos, ambiguous references, misuse of special
symbols, unclear coreference in text, and inconsistent relations
across various formats, and finally yield the analysis report.

3.2 Solutions to Challenges

Notably, to address the challenge 1 due to heterogeneous
formats, during step 1, we utilize Python libraries PDFMINER
and DOCX to handle the file format issue of the standard
(in .pdf [15] and in .docx [16] respectively). For example,
we handle terms in heading, terms in bold font, terms in
underscores, possible relation in bullet lists, etc. Last, the terms
in Figure 2 and type definitions in XML-schema in Figure 3
follow certain patterns, which we can accurately parse.

To address the challenge 2 due to document quality issues,
during steps 2-3, we propose several methods to carefully
validate the content in different formats. To handle the typo
issues, we adopt the Levenshtein editing distance [17] and
word embedding [11] similarity to identify and correct the
misspelled terms or typos. To handle the entity name differ-
ences due to acronym, abbreviation and misuse of connection
symbol, we resort to the external dictionary of IT glossary and
the NLP tools (i.e., STANFORD CORENLP [18] and SPACY
[19]), and etc.

Last, to address the challenge 3 due to the domain specificity
of the document, we design the steps 4-5 for accurate relation
extraction. As aforementioned, instead of directly using exist-
ing RE tools (e.g., OPENNRE [20]), we apply the NLP tools
(i.e., STANFORD CORENLP and SPACY) and the IE tool (i.e.,
OPENIE4 [12]). The solution idea is not to apply the general
RE tools directly, but to first locate the entities in the content
and then identify the relation via the aid of IE tool.
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4. METHODOLOGY

In this section, we elaborate on each step of our approach.

4.1 Integrating Content from Heterogeneous Formats

To make the analysis as complete (no missing content) as
possible, as mentioned in § 2-B, we consider content in
three formats (see Figure 1 — Figure 3). Furthermore, our
analysis includes some important content in the appendix
of the standard (e.g., acronym list). As shown in Table 1,
useful knowledge from various formats can be extracted and
categorized into three types: entity, entity attributes, and entity
relation.

Knowledge Collection. Information about entities can be
identified according to the content layout, term naming and
lexical rules inside different formats. Thus, we summarize the
following three guidelines for identifying them:

e Plain Text. In this part, we find the most useful knowledge
is about the description of entity names and relations
between entities. For instance, the entity name Partition is
explained as follows: “A partition is therefore a program
unit of the application designed to satisfy these parti-
tioning constraints”. Further, the entity relation between
Partiton and Process is identified from the following
text: “a partition comprises one or more processes that
combine dynamically to provide ...”.

e Pseudocode. In pseudocode, the most useful knowledge
is about entity attributes and entity relations. The pseu-
docode follows an Ada-like or a C-like syntax for variable
declaration or type definition — in fact, pseudocode de-
fines the basic data structure for the implementation class
of the RTOS. For example, the three conditional state-
ments in 2(b) are about attribute Partition.Operating_Mode
and the corresponding enumerated value is one mem-
ber of the set {IDLE, WARM_SATRT, COLD_START,
NORMAL}. Meanwhile, plenty of entity relations are
defined in pseudocode. For the pseudocode code “if (there
are any processes waiting for that event) then ...”, in
§ 4-C, we can identify the entity relation in SVO: [‘any
processes’, ‘waiting’, ‘for that event’]. Naturally, the
pseudocode is used to exhibit the data structure (attributes
or variables) and actions (methods or state transitions),
but lacks detailed natural language descriptions.

o XML-Schema Files. As shown in Table 1, XML-Schema
files contain few entity descriptions (annotation content),
but a few entity relations and plenty of entity attributes.
Take the XML-Schema file in Figure 3 as an example,
the entity Partition has not only the basic attributes Parti-
tion.|dentifier and Partition.Duration, and also the has relation
for MemoryRegions and PartitionsPorts. Then in § 4-C, we
extract such relations in SVO: [‘partition’, ‘has’, ‘memory
regions’] and [‘partition’, ‘has’, ‘partition ports’].

Knowledge Integration. Based on Table 1, the desired knowl-
edge is scattered over three heterogeneous formats of content
and only from one or two parts of them cannot acquire the
entire knowledge. Note that the content in the appendix (see



Table 1: Knowledge Distribution

Knowledge . . . . .
WJ Entity Entity Attributes Entity Relation

Plain Text [ 5} [ [ %)
Pseudocode € - [~
XML-Schema » [~ -

! Note that @ means “plenty of”; @ means “a few”; G means “few”; and
the descriptions of Entity Relation in Plain Text are mostly contained in
Pseudocode.

Figure 4) does not directly provide useful knowledge on an
entity, but it supplies a list of acronyms (not exhaustive).
Besides, we encounter some cases where a single term (e.g.,
an entity or an attribute) has different names (called alias), for
example, Memory Requirements in plain text and MemoryRegions
in XML-Schema all indicate the memory bounds of the
Partition. Thus, at this step, the task is to collect the knowledge
relevant to the same entity (e.g., MemoryRegions) together from
various formats. The more accurate analysis such as clustering
alias, merging extracted relations and formalizing refined
relations will be done in the following steps. So till now, we
have collected useful knowledge from the content in different
formats, and integrate them together in three categories: entity
name (along with entity descriptions), entity attribute (along
with definition and declaration) and entity relation (sentences
describing entity relations, not in SVO form yet).

4.2 Handling Document Quality Issues

As mentioned in § 2-C, the standard document suffers from
some quality issues: typos, misuse of special symbols, alias
due to case sensitivity, acronym, abbreviation or hyphenation.
Typos. Though ARINC653 standard has gone through a his-
tory of 15 years, with a series of five versions, there still exist
some typos. For example, “DecOrHexValueType” is misspelled
as “DexOrHexValueType” (see Table 3) in XML-Schema type
definition part. To address this issue, we propose two methods:
the Levenshtein distance and the word embedding technique.
Special Symbols. The existence of some special symbols
(e.g., 7, , ‘C, ©) and °-’), which disturbs the syntactic
structure, impairs the performance of sentence splitter tools.
For example, due to the parentheses, SPACY mistakenly splits
the sentence “The creation of processes (e.g., names used,
number of processes, etc.) for one partition ...” into “The
creation of processes (e.g., names used, number of processes,
etc.)” and “for one partition ...”. Such bad phenomena will
definitely cause severe information loss for downstream works.
Considering such issue, we adopt two methods to resolve
parentheses: (1) when the content in parentheses is used as
a complement, we retain the content whose starting word PoS
(Part of Speech) is one of the following types: {preposition
or subordinating conjunction, coordinating conjunction, wh-
adverb}. Otherwise, the parentheses part will be deleted.
(2) When the content before and in current parentheses can
constitute a full name/acronym pair (see Figure 5), we will
replace the full name with its acronym.

Acronym and Abbreviation. The usage of acronyms and
abbreviations for entity names or attributes is observed across

)
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The primary objective of this Specification is to define a general-purpose APEX
(APplication/EXecutive) interface between the Operating System (O/S) of an
avionics computer resource and application software.

Figure 5: Example of full name/acronym pair (from p.1)

Algorithm 1: ClusterAlias

Input: initial Dict: a dictionary for IT glossary

Input: entityList: a list of entity/attribute names

Input: sents: a list of sentences describing entity/attribute

Output: aliasDict: the dictionary for entity/attribute names and their
alias

1 for (full name/acronym) pair P € sents do

2 L initial Dict < initialDict U P;

aliasDict <+ entityList U initial Dict.values;

repeat

5 foreach s € sents, t € aliasDict.items do

6 /l Regular Expression Matching

7 if re.matched(s, t) then

8 ‘ aliasDict < aliasDict U matched alia;

9 /| Levenshtein Distance

else if find_near_matches(t, s, K(t)) then

1 ‘ aliasDict < aliasDict U matched alia;

/I Bag of Words Embedding Cosine Similarity

else if CosSimilarity(candidate alia € s, t) > 61 then
L aliasDict < aliasDict U candidate alia;

15 until no new alias clustered,
16 return aliasDict

the three heterogeneous formats (see § 4-A). In total, an entity
or attribute name in ARINC653 standard usually has more
than one alias, owing to the existence of case insensitivity, full
name/acronym, and abuse of hyphens, etc. Take the acronym
“FIFO” as an example, members of its alias set are {FIFO,
fifo, First In/First Out, first-in/first-out, First In First Out, first-
in-first out}. To avoid ambiguity and confusion, we need to
cluster the alias of the same entity or attribute.

Algo. 1 shows how we deal with the issues in entity recog-
nition. The input of Algo. 1 includes the term dictionary
initial Dict initialized with Appendix B and an IT glossary,
a list of entities and their attribute names entityList (output
of § 4-A Knowledge Collection part), and a list of splitted
sentences sents from the content of all three formats. The
output of Algo. 1 is a list of normalized alias dictionary
aliasDict (the key is a normalized entity name/attribute,
the value is the set of its corresponding alias, including
its acronym, abbreviation, names with special symbols and
typos). The idea of Algo. 1 is to cluster alias like an iterative
snowballing method [21] until no new alias is recognized.
Specifically, lines 1-2 depict the processing of full
name/acronym pair in parentheses for the example in Figure 5.
Lines 4-14 iteratively check whether the words in a given
sentence s from sents satisfy one of the following condi-
tions: (1) the candidate alia is matched with an element ¢ in
aliasDict using regular expression (this matching pattern is
case insensitive); (2) return True from fuzzy search function
find_near_matches® which is based on Levenshtein distance
[17]. The threshold function K (¢) is defined in Equation 1

2fuzzysearch is a Python package useful for finding approximate sub-
sequence matches, https:/github.com/taleinat/fuzzysearch



where the scalar « is assigned 0.3 after some convergence
judgment experiments. In addition, we can identify some typos
with the aid of Levenshtein distance. (3) we propose the
cosine similarity between the word embedding candidate alia
in each sentence s and each element ¢ in aliasDict. When the
cosine similarity (the word embedding is from [11]) between a
candidate alia parsed by SPACY and the element ¢ in aliasDict
greater or equal to #; (empirically assigned 0.96 in this study),
the candidate alia is qualified (such as Process_State and “the
state of the process”). Algo. 1 will terminate until no new alias
is found after scanning the entire list of sentences sents as
a whole. Notably, given a known entity/attribute name ¢, the
threshold K (t) for Levenshtein distance is proposed in the
Chen et al’s study [22], and defined as below:

K(t) = min(5, len(t) x ) (1)

Consequently, after the alias dictionary is established, the
analysis of entity/attribute names could be more accurate.
After on rule-based named entity recognition on the aliasDict
using spaCy, we aim to solve the issues arising from relation
extraction.

4.3 Handling NLP analysis issues

As mentioned in § 2-C, due to the domain specificity of the
ARINC653 standard, it is hard to directly apply the existing
RE tools for effective relation extraction. Besides, towards
accurate analysis, we need to handle coreference resolution.
Coreference Resolution. As an RTOS requirement and de-
sign document, the ARINC653 standard still has many parts
of natural language descriptions. One challenging issue for
NLP tasks is coreference resolution, e.g., the pronouns “it”,
“which”, “this service”. Such pronouns would not only hinder
the readability for the human audience but also pose chal-
lenges for automated extraction of relation. For the simple
pronouns like “if” and “which”, we can adopt the corefer-
ence resolution technique (implemented by SPACY or STAN-
FORD CORENLP). But for the coreference (e.g., “this ma-
terial”, “this service”) that its corresponding mention does
not appear in the surrounding context, the existing corefer-
ence resolution tools fail. We address such coreference in
a declaration-based method [23]. For example, “this service
is called by the error handler process” is resolved into
“RAISE_APPLICATION_ERROR service is called by the error
handler process”.

Relation Extraction. As explained in Table 1, the information
of entity relation is scattered over plain text, pseudocode and
XML-schema. We follow different strategies to extract relation
knowledge from these formats.

e In plain text, it is common practice to use the RE
tools to get the relation of entity-pair, such as the tool
OPENNRE [20] that should provide a plain sentence and
the relevant entity-pair indexes. Besides, other tools [24],
[25], [26], [27] can output relation triplets with only raw
text input. As in § 4-B, we have identified the list of entity
names and their attributes. Furthermore, we do proper
coreference resolution and extract all possible relations
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Algorithm 2: [EMerger

Input: sents: a list of sentences describing entity relations (containing
entities)
Output: relations: the list of SVO (subject-verb-object) triplet

relations < [];
for s € sents do
/+ information extractions */
IEs < OpenlE4(s);
if complement exists in IEs then
L concat relevant IEs;

if sub-relation exist in IEs then
L delete sub-relations of IEs;

if to-infinitive exists in IEs then
L concat in finitive of IEs;

if IEs are completely separated by connectives of s then
‘ relation < IEs with connectives;
else
if connectives exist in IEs then
split relevant IEs;
relation < I Es with connectives;
else
L relation < IEs;

| relations.append(relation);

return relations

between these entities. For example, from “Each partition
consists of one or more concurrently executing processes”
we can get the relation [‘each partition’, ‘consists of’,
‘one or more processes’].

In XML-schema, for the example in Figure 3, the
entity name, their attributes and their relations could
be explicitly identified. At line 1, the tag <xs:element
name= " Partition” Occurs="unbounded” > defines the
entity name Partition; at line 2, the tag <uxs:attribute
name= "lIdentifier” ...> defines the entity attribute Parti-
tion.Identifier. At lines 15-20, the tag <xs:element name=
” PartitionPorts” > is defined in the body of <xs:element
name= "Partition”> (line 1) and <xs:element name= "
FartitionPort” > (line 18) is defined in the body of
<xs:element name= " PartitionPorts” > (line 15) via
the tag <xs:complexType> — this means entity Partition
has or owns entity PartitionPorts (aggregation relation), and
PartitionPort is part of PartitionPorts (composition relation).
Similarly, we can extract all the relations among the
entities defined in the XML-schema.

In pseudocode, for Figure 6, the capability of the ex-
isting RE tools is limited in extracting relation from
pseudocode. The reason is twofold: (1) these tools can
only generate such simple pre-defined relations (e.g.,
relation [‘Person’, ‘is founder of’, ‘ORG’] of study [28]
and relation [‘Person’, ‘born in’, ‘LOC’] of study [29],
etc) or are only available to extract partial relation; (2)
existing RE tools pay much more attention to relation
type extraction and ignore the modifier (e.g., adjective,
prepositional phrase or subordinate clause, etc.) which
directly impairs the information integrity. Hence, based
on the IE tools that can extract more than one triplets to



OPERATING_MODE is WARM_START or OPERATING_MODE is COLD_START
or current process owns a mutex or current process is error handler process and
a process in WAITING state in not allowed to received resources

|Es:

0.90 (OPERATING_MODE; is; WARM_START or OPERATING_MODE)
0.89 (OPERATING_MODE; is; COLD_START)

0.93 (current process; OWns; a mutex or current process)

0.96 (current process owns a mutex or current process; is; error handler process)
0.65 (a process in WAITING state; is not allowed; )

El (a process in WAITING state; to receive; resources) ‘ !

Relation:

[[OPERATING_MODE', 'is', 'WARM_START", ‘or', 'OPERATING_MODE', 'is’, 'COLD_START, or,
['current process’, ‘owns’, ‘a mutex', ‘or’, ‘current process', 'is’, ‘error handler process'], and,
['a process in WAITING state’, ‘is not allowed to receive’, resources']]

| complement

Figure 6: An example for the relation extraction in pseudocode

effectively avoid information loss, we propose Algo. 2
to extract relations from the sentences, especially in
pseudocode.

The input of Algo. 2 includes the list of sentences sents con-
taining entity relations. The output of Algo. 2 is the list of SVO
triplets relations. Specifically, lines 2-3 of Algo. 2 iterates
each sentence inside sents and applies the IE tool OPENIE4
respectively. Lines 4-5 are to concatenate the complements to
assure the completeness of relation extraction, i.e., OPERAT-
ING_MODE could be COLD_START or WARM_START (see
the red box in Figure 6). Lines 67 are to identify the sub-
relation (current process; owns; a mutex or current process)
is part of (current process owns a mutex or current process;
is; error handler process) and then remove the sub-relation
(see the green box in Figure 6). Lines 8-9 are to handle
the relation to be extracted from the to-infinitive, for which
the sentence “a process in WAITING state is not allowed to
received resources” will be parsed into two relations (a process
in WAITING state; is not allowed) and (a process in WAITING
state; to receive; resources) (see the blue box in Figure 6).
Lines 10-17 are to handle the cases that use the connectives
and, or (like logical operators && and || in code). Notably,
lines 13—15 handle the case (current process owns a mutex or
current process; is; error handler process) where or is found
in the IE (also the green box in Figure 6).

Finally, from the three heterogeneous formats, we extract
the entity relations and collect them together into a SVO
triplet list, named relations, for the following step of relation
formalization.

4.4 Handling Relation Formalization

Till now, we can get the relations in form of SVO that are
suitable for human reading and comprehending, but not for
machine processing or verification still. Hence, we propose
Algo. 3 to formalize the entity relations obtained in § 4-C.

As illustrated in Algo. 3 FormalRelation, its inputs include:
aliasDict, the output of Algo. 1 that is an alias dictionary;
entityStructure, the integrated entity/attribute knowledge
obtained in § 4-A; funcParameters, functions and their
corresponding input parameters in pseudocode; relations, the
output of Algo. 2. The output of Algo. 3 is the logical guards in
first order logic (FOL). Before the relation formalization, we
adopt SPACY.ENTITYRULER to construct a rule-based NER
using the alias dictionary aliasDict (line 1). Then as shown in
lines 3—10, we will subdivide each relation’s components such
as subject, verb, object and object complement (if exist) into
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Algorithm 3: FormalRelation
Input:
Input:
Input:

aliasDict: the output of entity recognition in §4-B
entityStructure: the entity/attribute knowledge in §4-A
funcParameters: functions and their input parameters in
pesudocode

Input: relations: the output of Algo. 2

Output: guards: the list of FOL-like expressions

1 NER « spaCy.EntityRuler(aliasDict);
2 guards < [];
3 for rel € relations do
tupleList < [,
/I subdivide rel parts using NER
for part € rel do
if part is Subject or Object then
| tupleList.append(parseNoun(part));
else if part is Verb or Verb Complement then
L tupleList.append(parseVerb(part));

IS

C ® 9w

11 /l transform tupleList into guard with the
assistance of funcParameters and entityStructure
guard < PredicatedT'ransform(tupleList);

guards.append(guard)

12
13

14 return guards

tupleList. Finally, at lines 11-12 we translate such tupleList
into a guard through transformation rules for various repre-
sentation patterns of the sentences (see examples in Table 6).
Take the example shown in Figure 7, before formalizing
the relation [‘the semaphore\’s current value’, ‘equals’,
‘its maximum value’] extracted from Algo. 2, we leverage
the rule-based NER to subdivide all relation parts. For
details, (1) subdividing the noun phrase (subject or object)
into a quintuple [Flag, DT, Adj, Noun, Complement],
where the Flag represents whether this noun phrase is
affirmative, DT and Adj is article and adjective respectively,
and Complement means a prepositional phrase (e.g., ‘of
Partition” and ‘for Buffer’, etc.) or a subordinate clause;
(2) subdividing verb phrase (verb or verb complement)
into a tuple [Flag, Verb]. Finally, based on our predicated
transformation, we translate “equals” into “==", then
formalize the attribute “current value” and “maximum value”
as “SEMAPHORE(SEMAPHORE_ID).CURRENT_VALUE”
and “SEMAPHORE(SEMAPHORE_ID). MAXIMUM_VALUE”
respectively with the assistance of the input funcParameters
item SIGNAL_SEMAPHORE: (SEMAPHORE_ID,
RETURN_CODE), where the key is a function name
and value corresponds to its parameters (That is, given
function name SIGNAL_SEMAPHORE, we can easily get
the Semaphore key SEMAPHORE_ID).

Finally, we have gained the guards that machines can process
and are applicable to auto-verification to check whether there
are any statements with possible inconsistency in system
entity/attribute knowledge.

5. EVALUATION

In this section, we conduct experiments to evaluate the quality
of the Ontology outputted by our approach, the analysis
accuracy and the practical usefulness of our approach.



integrated - —
knowledge ClusterAlias aliasDict

tupleList

current value, ..., semaphore's current value

: Current value,

[[True, 'the’, ", 'semaphore\'s current value’, -1], [True,
(‘equals’, 'VBZ")], [True, ", 'its', 'maximum value', -1]]

relation HFromalRelationH guard ‘

the semaphore's current value equals its i

['the semaphore\'s current value', ‘equals, ‘its maximum Hc]|

ISEMAPHORE(SEMAPHORE_ID).CURRENT_VALUE ==
SEMAPHORE(SEMAPHORE_ID).MAXIMUM_VALUE

Figure 7: The input, output and examples of relation formalization
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Figure 8: The overlaps and differences of the two models Ontology N, p and
Ontology i Ellipse nodes (representing entities) in black color denote the
overlapping part; nodes in color denote the unique necessary parts of
Ontology 1, p; nodes in red color (and blue) denote the unique necessary
(and unnecessary) parts of Ontologyy g, respectively.

5.1 Research Questions

We aim to answer these two research questions (RQs):

1) What is the quality of the Ontology model extracted
with the aid of NLP techniques, compared with the one
manually constructed by human experts?

2) What is the accuracy of our approach in analyzing
among the three different versions (P1-3 to P1-5) of the
ARINC653 standard? What are the analysis results?

To address RQI1, we use PROTEGE [14] to generate our
Ontology model (called Ontologynrp) from the knowledge
on entities and their relations, then compare it with the
Ontology model summarized by human experts for version 3
in the study [2] (called Ontologyy ). The metrics to measure
Ontology quality are the completeness of two models. To
address RQ2, we measure the precision and recall of the two
algorithms in relation extraction and formalization on three
versions of part one of the ARINC653 standard (ARINC653
P1). Besides, we provide details of the analysis results on
the anonymous website [30]: https:/sites.google.com/view/
nlp-for-arinc653/home.

5.2 Answer to RQ1: Quality of the Ontology Model

Ontology Quality. In Figure 8, we illustrate the over-
laps and differences of the two models Ontologynrp and
Ontologym g, and Table 2 lists the statistics of the two models.
In total, they share a similarity of 86.27% in terms of entities
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Table 2: Statistics about Ontologyr g and Ontology N1, p

Terms| Entity Attributes Relations
Ontology Item (Classes Hierarchy)(Data Properties)(Object Properties)
#Unique for Ontology xzp 10 12
#Unique for Ontology jy 2 7 8 28
#Intersection 44 53 52

and relations (i.e., the class hierarchy and objective properties
in Ontology). The unique part of Ontologynrp is about
the 4 entities (associated with their attributes and relations,
see Figure 8 green ellipse nodes) SystemError, MemorySection,
CacheSettingType and ReturnCodeType. After contacting the au-
thors of Zhao et al. [2], it is confirmed that these four entities
are valid and should be considered into the Ontology model.
On the other side, Ontologyy g contains 7 unique and neces-
sary entities (see Figure 8 red ellipse nodes) include Channel,
ModuleErrorActions4State, ModuleStateType, Message as well as
their sub-entities (if any). After we inspect the ARINC653
standard, we find these entities just appear with names, and
not enough content in plain text or pseudocode is provided
for NLP to extract any useful knowledge. The authors of
Zhao et al. [2] include these 7 entities mainly based on
their domain knowledge. Besides, the 15 (see Figure 8 blue
ellipse nodes, and the rest 3 entities are not listed) remaining
unnecessary entities of Ontologyy g all are enum instances,
which are actually considered in the SVO guards we extract —
whether to consider them in Ontology is a modeling decision
problem.Details of the two Ontology models could be found
at [30].

Typo Fixing. During the construction of Ontologynrp, we
find that Algo. 1 almost has no errors in clustering alias — all
the typos, acronyms, abbreviations for exciting entity/attribute
names have been correctly identified as aliases. Hence, we
apply our approach (see § 4-B) and find 9 typos in version
3 of ARINC653, listed in Table 3. In the latest version 5
of ARINC653, six typos are fixed and the remaining three
typos still exist. Take a typical example, the entity name Error
Process, which literally means a Process with error, is a typo. Its
name should be Error Handler Process, as it actually refers to the
handler for Error Process — this typo could be very misleading.
This proves that our approach can indeed improve the standard
quality at some easily ignored places in an automated way.

Answer to RQI1: Results show that Ontologynrp
and Ontologygp have an overlapping of over 86.27%.
Ontologynrp has knowledge that exists in the standard but
is missed by Ontologyy r; Ontologyy g has knowledge not
detailed in the standard but added by human experts.



Table 3: Typos found in version 3 of ARINC653 standard

Typos Term Page No. of Fixed in
Version 3 Version 5
process sate process state 26 YES
eITor process error handler process 53, 183 YES
DexOrHexValueType DecOrHexValueType 179 NO
MultiPartitionHM- MultiPartitionHM- 183 YES
TableHameRef TableNameRef
NameTypes NameType 186 NO
ARINX ARINC 199 YES
PartitionType PartitionsType 200 YES
memorySection memorySectionType 211 YES
CacheSetting cacheSetting 211 NO

Table 4: ACCURACY OF ALGORITHM 2 FOR THREE ARINC653 VERSIONS

ARINC653 P1 Version 3 Version 4 Version 5
#Total Relation 201 237 236
#Correct SVO 193 226 226
#Wrong SVO 3 6 5
#Missed SVO 5 5 5
Precision!(%) 98.47 97.41 97.83
Recall(%) 97.47 97.83 97.83

1 Precision=#Correct SVO/(#Correct SVO + #Wrong SVO)
2 Recall=#Correct SVO/#Total Relation

5.3 Answer to RQ2: Analysis Accuracy and Results

Accuracy of Algo. 2. In Table 4, we show the accuracy of
Algo. 2 in relation extraction for versions 3-5. Experiment
results show that the precision is quite good, for three versions,
no more than 6 relations are extracted into the wrong SVOs.
These failed cases are attributed to the internal issues of the
adopted tool OPENIE4, which cannot well handle relations in
complex sentences and subordinate clauses. In each version,
there are 5 missed cases that the corresponding SVOs are
failed to get their relations. After inspection, we find that
OPENIE4 will omit the object complement when encountering
to-infinitive, for example, “the specified port is not configured
to operate as a source” will be parsed into (the specified
port; is not configured; ) and (the specified port; to operate;
) without its object complement “as a source” (source is an
enumeration value). In total, except for the few false positives
or false negatives due to OPENIE4, Algo. 2 exhibits an
excellent accuracy for extracting relations from sentences.

Accuracy of Algo. 3. In Table 5, we show the accuracy of
Algo. 3 in relation formalization from SVO to logical guards.
For version 5, among the 226 correct SVO triplets from the
previous step, Algo. 3 can correctly extract 216 guards but fail
for the left 10 (226-216) SVO triplets. 6 out of 10 ones extract
wrong guards due to complex sentence structures in SVO—
multiple prepositional phrases, and causative sentence (e.g.,
“no process has preemption locked”). Meanwhile, for the other
4 SVO triples, no proper guards are generated due to the issues
in subdividing parts by the NER tool. For example, when the
SVO triplet is divided as [‘PROCEss_ID’, ‘is’, ‘a process that
owns a mutex or is waiting on a mutex\’s queue’], without
domain knowledge, it is hard for Algo. 3 to extract the correct
guard like human experts. Overall, Algo. 3 also shows an
excellent accuracy in relation formalization, and only fails
when the sentence structure in SVO is very complex or the
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Table 5: ACCURACY OF ALGORITHM 3 FOR THREE ARINC653 VERSIONS

ARINC653 P1 Version 3 Version 4 Version 5
#Correct SVO 193 226 226
#Correct Guard 186 217 216
#Wrong Guard 4 5 6
#Missed Guard 3 4 4
Precision'(%) 97.87 97.75 97.30
Recall’(%) 98.41 98.19 98.18

! precision=#Correct Guard/(#Correct Guard + #Wrong Guard)
2 Recall=#Correct Guard/#Correct SVO

when (current process is periodic and new deadline will exceed next release point)
RETURN_CODE := INVALID_MODE

Figure 9: Attribute deadline mistakenly used for deadline_time in pseu-
docode

part subdivision by the NER tool has some issues.

Quality of Logical Guards. The logical guards formal-
ized from the SVO triplets are formulas of first order logic
(FOL). Hence, these guards are not necessary to be atomic
propositions, but compound propositions (see Table 6 column
“Example Guard”). During relation formalization, we indeed
find some atomic representation patterns in pseudocode, which
is listed in Table 6 column “Representation Pattern”. Each
logical guard is basically a combination of logic propositions
behind one or more atomic representation patterns. The last
column “#Frq” of Table 6 lists the number of guards (inside
216) which has the corresponding representation pattern as
part. For example, the representation pattern (3) (judging on
an attribute of some entity) is the most frequent pattern found
in logical guards, contained in 155 out of 216 guards.
Inconsistencies Found in Real-time Requirements. After
getting the logic guards, we solve them and check the results.
Interestingly, the solving results show these guards cannot be
satisfied as a whole (indicating possible logical issues). After
inspection, we find the issues root from the inconsistent term
usage in the real-time requirements across different formats.
The attribute deadline is mistakenly used, when the attribute
deadline_time is actually needed. We found there exist more
than 21 instances of inconsistent term usage on deadline and
deadline_time across different formats in ARINC653 standard
(see example in Figure 9)—deadline is an enum attribute and
deadline_time is the actual time attribute. As a key concept
in real-time system standards, the mistaken usage of deadline
could cause critical issues in system implementation. Hence,
we have reported such issues to the ARINC653 standard
committee and get their acceptance.

Answer to RQ2: Results show that Algo. 2 and Algo. 3
exhibit excellent precisions and recalls for versions 3-5. The
errors in the analysis are mainly due to 1) very complex
sentence structure 2) the internal issues of used IE and NER
tools. Our automated analysis also helps find 9 typos and more
than 21 instances of requirement inconsistency.

5.4 Discussion

Aid in Automated Verification. In this study, we aim to
bridge the gap between NLP techniques and automated for-
mal verification. The successful construction of Ontology



Table 6: Representation Patterns and Their Usage in Guards

No.Representation Pattern Relation in SVO Example Guard #Frq!
(1) ENT (ENT_NAME/ENT_ID): the entity['PROCESS_ID’, ‘does not identify’, ‘an existing process’] PROCESS (PROCESS_ID) ¢ Set (PROCESS) 96
identified by the ENT_NAME or ENT_ID
(2) this—ENT: current ENT [‘current process’, ‘is’, ‘error handler process’] this — PROCESS == ERROR_HANDLER_PROCESS 140
(3) ENT.ATTR: the attribute ATTR of ENT [‘partition’s lock level’, ‘is’, ‘greater or equal to this — PARTITION.LOCK_LEVEL > 155
MAX_LOCK_LEVEL’] MAX_LOCK_LEVEL
(4) ATTR: an enumeration or a parameter [‘DELAY_TIME’, ‘is’, ‘infinite’] isInfinite (DEADY_TIME) 70
(5) isAdj (ENT): ENT is adj [“identified process’, ‘is not’, ‘a suspended process’] isSuspended (PROCESS (PROCESS_ID) ) 44

(6) Adj (ENT): adj ENT

(7) isVerbPrep (ENT1, ENT2):
verb prep ENT2

(8) set (ENT): ENT set of current partition [‘no  current

CESS_NAME’]

partition

[‘previous process’, ‘is not stopped’]
ENT1 is[‘any processes’, ‘waiting’, ‘for that event’]

process’,

— isStopped (Previous (this — PROCESS)) 1

3 process € Set (PROCESS) | 45
isWaitingFor (process,
EVENT (EVENT_ID) )
‘named’, ‘PRO-  PROCESS (PROCESS_NAME) € 94

Set (this—PARTITION.PROCESS)

! #Frq means the number of guards containing the corresponding representation form.

models and guards extraction from the ARINC653 standard
has demonstrated the feasibility — construction of the high-
quality formal model, as pain points in standard (or protocol)
verification, could be facilitated by modern NLP techniques.
Besides, we have conducted simple verification by solving the
logical guards formalized from the relations in SVO triplets.
Towards the goal of fully automated verification, in the future,
we plan to automatically convert the Ontology model and
logical guards into the Event-B notation [31]. Based on the
Event-B model, we could conduct the verification on entity
attributes and relations.

Efficiency of Our Approach. According to the authors of
Zhao et al.[2], it takes them around 3 months’ manual effort
to construct Ontologyy g, even they have done the manual
analysis for similar specification documents before. In this
study, given the list of potential entities and some IT glossary
(external dictionary, see § 3-A), through the aid of our NLP-
based approach, it only takes around 10 minutes to automat-
ically construct the model Ontologynrp and formalize the
complementing entity relations in guards for any version of
the ARINC653 standard. Moreover, as Figure 8 shown, we
can conclude 4 unique entities omitted by the human expert.
Generality of Our Approach. The studied standard AR-
INC653 in this paper is a typical and well-structured document
for software. It combines plain text, semi-formal pseudocode,
and formal data structure in XML-Schema. This kind of
documents is strongly recommended for a high evaluation as-
surance level in safety and security certification, e.g. Common
Criteria (CC), DO-178C and EN61508. For instance, in CC
certification, developers are requested to provide functional
specification (FSP) and TOE design specification (TDS) doc-
uments similar to ARINC653 standards. The approach in this
paper is directly applicable or extensible for such documents.
Threats to Validity. The internal threats to validity are
threefold. First, our NLP-based approach heavily relies on the
modern NLP tools such as STANFORD CORENLP, spACY,
and OPENIE4, etc. The issues of these tools affect the results
of our approach. Second, some key parameters, e.g., the
similarity threshold K (t) for Levenshtein distance in § 4-B,
are empirically determined in related literature [22]. Third, the
current methodology operates under the assumption of well-
structured, clean standard documents, which could impair its
performance when applied to disorganized industrial specifi-
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cations. Additionally, the ARINC653-specific rule adaptations
carry inherent overfitting potential. In future, more rigorous
experiments could be done to address this issue. The external
threats to validity arise from the input quality (the entity list
and the IT glossary) for our approach. In this study, we use
the common terms in OS domain and the IT glossary [10] as
input, and our approach does not require that the entity list or
the IT glossary must be of high quality and complete.

6. RELATED WORK

The following lines of work are related to our study.

6.1 Formalization Verification

The purpose of verification is aimed to find any violation
or vulnerability. Based on this starting point, [32] directly
analyzes the Proverif model extracted from its JavaScript
code to verify the protocol core. Besides symbolical proof
Proverif, [33] also applies pi-calculus and uses computational
proof CryptoVerif in the hope of finding deeper vulnerabil-
ities. Recently, the verification of ARINC653 specification
is accomplished by Circus language [34], AADL (Architec-
ture Analysis and Design Language) [35], [36], [37], and
PROMELA of the SPIN model checker [38], however, in
which only a small part of services are modeled. In [2], the sys-
tem functionalities and all service requirements of ARINC653
have been formalized in Event-B, and some errors have been
found in the standard. All of the above formal specifications
are developed manually, whilst this paper focuses on the
automated creation of the ARINC653 standard.

6.2 Relation Extraction

Methods based on bootstrapping and supervised learning are
proposed to extract relations.

Bootstrapping is also called snowballing which can extract the
same relation given entity-pair and initial few relation seeds.
It iteratively calculates the similarities between instances and
existing relation patterns to cluster the same relation instances.
[21] shows book-author relation extraction among instances
whose named entities are already tagged. [29] recently reveals
a novel bootstrapping method called Neural SnowBall that can
address new relation issues by transfer learning with only
a few instances. However, our approach can further retain
the important modifier (e.g., adjective, prepositional phrase or
subordinate clause, etc.) to ensure information integrity.



Moreover, a supervised relation extraction usually can extract
more high-quality relations. An RNN model is presented by
[39] for relation classification based on the corresponding
word sequence features. [40] even applies a convolutional
DNN for relation classification with the input of lexical and
sentence-level features. To reach a better performance, [41]
adds a Feature-rich Compositional Embedding Model (FCM)
for subsequent relation extraction. Currently, popular RE tools
also possess a high degree of automation that even with simple
input examples, the desired relationships can be extracted.
REVERB [24] only needs raw text input and quickly out-
puts subject-verb-object SVO triplets and their corresponding
confidence. As for OPENNRE [20], entity-pair indexes are
required additionally. Our approach can efficiently extract
relations from the domain specification ARINC653 which has
no comparable scale with the corpus (e.g., biomedicine [42],
news reports, etc.) applied in the above models or tools.

6.3 Documentation Content Extraction

A document always contains the target content that will
be parsed or verified. [43] translates the UML Statechart
Diagrams into PROMELA and then automatically verifies this
translation with the help of the SPIN model checker. [44]
further supplements the automated Linear Temporal Logic
(LTL) properties derived from the sequence diagram for the
verification of a protocol. Instead, [32] pays attention to an
interoperable implementation of a protocol (TLS 1.0-1.3) and
directly analyzes this protocol core. Different from the above
methods, [2] leverages the product of manually summarized
Ontology induced from ARINC653 Standard as the input to
the subsequent work. Notably, our approach can make full use
of much more detailed information from various formats.

7. CONCLUSION

In this paper, we propose an approach towards knowledge
extraction from heterogeneous data formats in the ARINC653
standard. Our approach combines the NLP techniques with
domain-specific naming (e.g., acronym and abbreviation), con-
tent layout rules (e.g., headings, bullet, indention, etc) and lex-
ical rules (e.g., usage of special symbols) to extract knowledge
from the semi-structured ARINC653 standard. Based on that,
we conduct the processing of named entity recognition (NER),
relation extraction (RE) and relation formalization via the aid
of modern NER and IE tools. Finally, experiments confirm
the quality of our Ontology model, prove the accuracy of the
analysis approach, and show the usefulness of formalized rela-
tions in logical guards (we find 9 typos and 21 inconsistency
issues). In the future, we plan to automatically convert our
Ontology model and logical guards into the Event-B notation
for automated formalization verification.
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