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Abstract—Fuzzing is a testing technique that generates a large
number of inputs to cause program crashes. As software develop-
ment accelerates and projects scale, the demand for fuzz testing
in software assurance has increased. Performing comprehensive
fuzz testing on all functions has become increasingly challenging
and resource-intensive. Current methods for determining when
to stop fuzz testing activities rely on metrics such as function
coverage, potential vulnerability function coverage or crash
count. However, these metrics fail to account for the scale of the
functions under test. For example, function coverage may lead
to excessive testing on non-critical functions, while vulnerability
function coverage can result in premature termination if the
estimated number of vulnerability functions is too low.

This paper introduces a novel fuzzing testing termination
criterion based on function clustering. We compare our criterion
with three existing methods. First, by leveraging language model
for function encoding and a multi-metric fusion algorithm for
determining the number of clusters, we establish a relationship
between function clustering and vulnerability distribution. Sec-
ond, our experiments on eight function libraries demonstrate
that the proposed termination criterion significantly improves
testing efficiency, reducing fuzzing time by 1.4–7.2 hours (5–30%)
across different configurations while maintaining minimal bug
loss (averaging 0.25 bugs), outperforming existing criteria like
potential vulnerability function coverage-based approaches.

Index Terms—fuzzing, function clustering, stopping criterion

I. INTRODUCTION

Fuzzing [1], an automated vulnerability detection technique,
involves injecting abnormal data into target programs to
trigger potential security defects. In recent years, as soft-
ware complexity [2] has increased, fuzzing techniques have
evolved from random mutation to more intelligent approaches.
These advances include combining coverage feedback [3]–
[5], symbolic execution [6], and AI optimization [7]. For
instance, large language models are used to generate high-
quality test seeds, and probabilistic models like HyperGo [8]
enhance vulnerability detection speed. Fuzzing applications
are now widespread across various fields, including intelligent
connected vehicles [9], databases [10], and operating system
kernels [11], significantly improving the depth of vulnerability
discovery.

However, existing termination criterion for fuzzing face lim-
itations, especially when dealing with security vulnerabilities,
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which are a small fraction of all software defects. Conven-
tional fuzzing often wastes resources on non-critical code, and
imprecise stopping mechanisms lead to prolonged, inefficient
testing [12]. Balancing fuzz testing time and effectiveness is
crucial to avoid overlooking important security risks. However,
research in this area is limited, highlighting the need to further
explore and optimize termination criterion to enhance software
security and reliability.

Current fuzz testing activities primarily use crash counts
or function coverage to determine termination. Some recent
studies [13] suggest using the growth of potential vulnerability
function counts as a termination criterion. However, these
methods present several notable issues [14]. The reliance on
crash counts often leads to numerous duplicate crashes, which
can result in either premature or delayed test termination.
When tests terminate too early, important vulnerabilities may
remain undetected, and excessive duplicates can waste valu-
able testing time and resources. Similarly, relying on function
coverage may lead to testing non-critical areas, wasting re-
sources and diverting attention from more critical sections of
the code that may harbor significant vulnerabilities.

The potential vulnerability function coverage criterion ef-
fectively resolves the limitations of the two previous criteria.
However, it can also cause premature test termination when
the predicted number of vulnerability functions is too low,
risking the omission of deeper, more subtle vulnerabilities that
may not be immediately apparent. Overall, these limitations
underscore the necessity for more comprehensive and adaptive
termination criteria that can effectively balance efficiency with
thoroughness in fuzz testing.

We find that a small number of functional clusters typically
contain the majority of vulnerabilities, while others remain
relatively clean. This demonstrates that similar functions often
exhibit related types of vulnerabilities, which can be leveraged
to design more effective termination criteria for fuzz testing.

Therefore, this paper proposes a novel termination criterion
for fuzz testing: the fuzzing campaign can be terminated
when either (1) the number of covered function clusters
increases (though not necessarily all functions are covered,
indicating test coverage adequacy), or (2) crash occurrences
grow within specific clusters (demonstrating testing effective-
ness). The proposed method involves several key steps. First,
cluster analysis is performed on the functions under test to



TABLE I: Crash Dataset Overview

Subject # Functions # Crashes # Clusters # Buggy Clusters

Libpcap 497 595 96 2
LibTIFF 826 17,701 67 2
Libxml2 2,982 50,907 43 2
nm 2,126 58 77 1
objdump 2,701 4,014 98 3
size 2,101 77 91 1

Total 11,233 73,352 472 14

identify the cluster membership for each function, allowing
for a better understanding of how functions relate to one
another. By monitoring the number of clusters that have been
tested and the number of triggered crashes in these clusters,
this criterion provides a effective approach to determine the
optimal stopping point for testing. Specifically, the termination
criterion is triggered when the change in either code coverage
across functional clusters or the crash count within any specific
cluster falls below a set threshold over a time window.

implementation of this study comprises two key compo-
nents: first, encoding the functions in the target C library
with CodeBERT, followed by grouping these functions through
a clustering algorithm. The optimal number of clusters is
determined using internal clustering metrics and a cluster
number selection algorithm. The approach is validated on the
POJ-104 dataset, and its external metrics are analyzed. Next,
the study empirically evaluates the cost-effectiveness trade-
offs. Experiments are conducted on eight target programs.
Eight state-of-the-art grey-box fuzzing tools are used, with
each tool undergoing 20 repeated test runs (for a total of 1,280
fuzzing campaigns). Each run lasts for 24 hours.
Contributions. Our work makes the following key contribu-
tions:

• We propose a novel relationship between vulnerabilities
and function clustering, demonstrating that vulnerabilities
tend to concentrate in specific function clusters.

• We design an innovative Multi-Objective Optimal Clus-
tering Number Selection algorithm to automatically deter-
mine the optimal number of function clusters, addressing
a critical challenge in code analysis.

• Through extensive experiments, we show that our pro-
posed termination criterion significantly outperforms ex-
isting methods in terms of computational efficiency while
maintaining detection accuracy.

• We open-source all relevant code and datasets to support
reproducibility and encourage further research advance-
ment in the community.

To support open science, we release our work at:
https://sites.google.com/view/fcbft

II. MOTIVATION

In the domain of software security testing, recent years have
witnessed a paradigm shift in vulnerability detection from
coarse-grained to fine-grained [15] approaches. With the rapid
and continuous evolution of modern software applications,

Fig. 1: Proportion of Buggy Function Clusters per Target

traditional fuzz testing methods based solely on code cov-
erage increasingly struggle to balance testing sufficiency and
resource efficiency. Academic research has widely observed
that vulnerabilities [16] are not uniformly distributed across
codebases but exhibit significant correlations with functional
units’ semantic features, control flow patterns, and depen-
dency networks. This non-uniform distribution characteristic
provides a theoretical foundation for constructing intelligent
testing termination criteria—by identifying vulnerability-dense
regions through function clustering, dynamic regulation of
testing processes becomes achievable. However, existing ter-
mination criteria predominantly rely on single-dimensional
metrics such as time thresholds or coverage saturation, failing
to effectively integrate code semantic features with vulner-
ability risk propagation patterns, which leads to substantial
misallocation of testing resources.
Relationship between Function cluster and Vulnerability.
Function clustering [17] is a grouping method based on seman-
tic similarity, functional proximity, or structural dependencies
among functions. In recent years, with the application of
deep learning techniques in code analysis [18], code-semantic-
based function clustering has become a research hotspot.
Analyzing the relationship between function clustering and
vulnerabilities reveals several key points. First, there is a
correlation between function semantic similarity and vulnera-
bility distribution. In practical software, certain vulnerabilities
exhibit distinct reproducible characteristics, where code with
similar functionalities tends to harbor similar vulnerabilities.
For example, common buffer overflow vulnerabilities in mem-
ory management functions and unchecked input vulnerabilities
in input handling functions. By employing function semantic
clustering, we can categorize code with similar functionalities,
thereby concentrating testing resources on high-risk categories
and enhancing the targeting of vulnerability detection. To
validate the relationship between function clustering and vul-
nerability distribution, we utilize a comprehensive real-world



fuzz testing dataset from Fuzztastic [19], which includes basic-
block-level coverage and crash logs from 12 subject programs.
We begin by performing function clustering for each target
program. Taking Libpcap as an example, its 497 functions are
organized into 96 clusters. A cluster is designated as buggy
if any function within it leads to a crash, as indicated by the
corresponding crash logs. Table I reports the number of buggy
clusters identified after function clustering and crash analysis.
Figure 1 shows the proportion of buggy clusters across all
target libraries. Statistical analysis shows that vulnerabilities
are confined to only 14 clusters (approximately 2.9%) out of
472, with Figure 1 further confirming their marginal presence
across all function libraries. Second, function clustering en-
hances the focus on high-risk areas. Through a clustering-
based fuzz testing approach, functions can be prioritized for
testing, allowing high-risk clusters to be tested first while
reducing the intensity of testing in low-risk or less similar
clusters. This method effectively minimizes resource wastage
and significantly improves testing efficiency.
Fuzzing Stopping Criterion based on Function Cluster.
This approach maintains testing coverage while significantly
reducing testing time and resource costs. Functions are clus-
tered based on characteristics such as functional similarity, po-
tential vulnerability risks, and code dependency relationships.
This allows for the identification of high-priority subsets,
enabling focused testing on critical areas. In fuzz testing, using
crash counts as an effectiveness metric can lead to underes-
timation or overestimation, potentially missing vulnerabilities
or causing excessive testing duration. Code coverage, while
reducing underestimation risks, may overestimate effectiveness
by assuming uniform code importance and covering non-
critical areas. Lip [13] proposed an improved method focusing
on coverage saturation in potentially vulnerable code regions
identified through static analysis. However, this method may
terminate prematurely if too few vulnerable functions are
predicted. To address these limitations, this paper proposes
a fuzz testing termination criterion based on the number of
function clusters, balancing resource efficiency and testing
effectiveness.

III. APPROACH

This section divides our approach into two parts. The Function
Clustering part presents a CodeBERT-based method for group-
ing functions and identifying the optimal number of clusters.
The next part demonstrates the application of our proposed
termination criterion in fuzz testing.

A. Function Clustering

Algorithm 1 enables fully automated end-to-end computation
by intelligently determining the optimal number of clusters
through a multi-objective optimization [20] framework. The
process begins by normalizing and vectorizing input functions
using CodeBERT [21] embeddings. Next, clustering quality is
evaluated for each candidate k using multiple complementary
metrics. Potential values of k are identified through a hybrid
approach that combines the elbow method with silhouette

coefficient peak detection. Non-dominated solutions are then
used to construct the Pareto frontier, and the final optimal k is
selected via entropy-weighted multi-criteria decision-making,
ensuring a balanced trade-off between all quality metrics.

Algorithm 1 Multi-Objective Optimal Clustering Number
Selection
Input: Function set F , Search range of cluster numbers

[kmin, kmax]
Output: Optimal cluster number k∗

1: 1. Code Normalization & Vectorization
2: X← ∅
3: for each function f ∈ F do
4: f ′ ← CodeNormalization(f)
5: x← CodeBERT(f ′)
6: X← X ∪ {x}
7: end for
8: 2. Multi-Criteria Evaluation
9: for k = kmin to kmax do

10: {C1, ..., Ck} ← K-Means(X, k)
11: Compute SSE, Silhouette, CH, and DB indices for

current k
12: end for
13: 3. Candidate Subset Selection
14: Compute second-order differences of SSE
15: Kelbow ← {k | ∆2(k) < θe}
16: Ksil ← {k | Local maxima of Silhouette}
17: Kcandidate ← Kelbow ∩ Ksil
18: 4. Pareto Frontier Construction
19: P ← {k ∈ Kcandidate | ∄k′ ∈ Kcandidate, F (k′) ≻ F (k)}
20: 5. Entropy-Weighted Decision
21: Compute entropy weights for each metric
22: Compute score for each candidate cluster number
23: return k∗ ← argmaxk∈P Score(k)

1) Motivation: Traditional methods for function analysis,
which rely on surface-level code structure or text matching,
often fail to capture deep semantic relationships. To address
this, we leverage CodeBERT, a pre-trained model adept at
extracting semantic features from code, to generate function
embeddings. These embeddings are clustered using K-Means
to group functionally similar code segments. However, assess-
ing clustering quality and determining the optimal number
of clusters remain challenging. Instead of ad-hoc heuristics,
we employ multiple internal clustering validation indices to
evaluate cluster compactness, separation, and stability from
complementary perspectives. To robustly select the cluster
count, we integrate the elbow method with local peak analysis
of internal indices to narrow the search space, then apply
Pareto optimization [22] to resolve multi-metric trade-offs.
This approach ensures semantically coherent clusters while
mitigating biases inherent to single-index evaluation.

2) Function Encoding: In this study, we leverage the
CodeBERT model to perform vector encoding on functions,
aiming to capture the semantic and structural features of code.
Initially, the function code is formatted into an acceptable



input format using CodeBERT’s tokenizer, with special to-
kens added. Subsequently, the formatted code is fed into the
CodeBERT model to generate high-quality 768-dimensional
vector representations. These vectors effectively reflect the
contextual information and structural characteristics of the
code. Finally, the generated vectors are stored in association
with their original functions, providing a solid foundation for
the subsequent K-Means clustering analysis.

3) K-Means Clustering: Upon completing the function
vector encoding, this study adopts the K-Means clustering
algorithm for function analysis. As a classical unsupervised
learning algorithm, K-Means is widely used in large-scale
dataset clustering due to its simplicity and efficiency. To
evaluate the quality of the K-Means clustering results, this
study employs four internal clustering metrics—Silhouette
Score, Calinski-Harabasz Index, Davies-Bouldin Index and
SSE. These metrics provide a comprehensive assessment of
cluster quality by measuring distinct aspects such as com-
pactness, separation, and balance. This multi-metric approach
enhances robustness and mitigates bias that may arise from
relying on a single evaluation criterion.
SSE (Sum of Squared Errors). SSE is a common metric
for assessing clustering compactness. It calculates the sum
of squared distances between each data point and its cluster
center across all clusters. The formula for SSE is:

SSE =

k∑
i=1

∑
x∈Ci

∥x− µi∥2 (1)

Here, k denotes the number of clusters, Ci represents the set
of data points in the i-th cluster, µi is the center of the i-
th cluster, and x is a data point in the cluster. A smaller SSE
value indicates tighter clustering of data points within clusters,
reflecting better clustering performance.
Silhouette Coefficient. The silhouette coefficient evaluates
clustering results by considering both intra-cluster cohesion
and inter-cluster separation. Its value ranges from -1 to 1,
with a higher value implying better clustering quality. The
calculation process is as follows: For the i-th data point xi,
define:

• a(xi) as the average distance from xi to other data points
in the same cluster (cohesion)

• b(xi) as the minimum average distance from xi to data
points in other clusters (separation)

The silhouette coefficient for xi is:

s(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))
(2)

The overall silhouette coefficient is the average of all data
points’ silhouette coefficients:

S =
1

n

n∑
i=1

s(xi) (3)

Here, n represents the total number of data points.
CH Index (Calinski-Harabasz Index). The CH index as-
sesses clustering quality by comparing inter-cluster dispersion

to intra-cluster cohesion. A higher CH value indicates better
clustering. The formula is:

CH =
TRss × (n− k)

SCss × (k − 1)
(4)

where TRss is the between-cluster sum of squares and SCss

is the within-cluster sum of squares. They are calculated as:

TRss =

k∑
i=1

ni∥µi − µ∥2, SCss =

k∑
i=1

∑
x∈Ci

∥x− µi∥2

(5)
Here, n is the total number of samples, k is the number of
clusters, ni is the number of samples in the i-th cluster, µ
is the center of all samples, and µi is the center of the i-th
cluster.
DBI (Davies-Bouldin Index). The DBI assesses clustering
results based on cluster compactness and separation. A smaller
DBI value signifies better clustering. The formula is:

DBI =
1

k

k∑
i=1

max
j ̸=i

(
σi + σj

d(ci, cj)

)
(6)

Here, σi measures the compactness of the i-th cluster, calcu-
lated as:

σi =

√
1

ni

∑
x∈Ci

∥x− ci∥2 (7)

d(ci, cj) is the distance between cluster centers ci and cj , often
computed using the Euclidean distance:

d(ci, cj) = ∥ci − cj∥ (8)

These metrics evaluate clustering from multiple perspectives,
offering a comprehensive assessment of clustering quality and
reliability.

4) Determining the Number of Clusters: For the selection
of the number of clusters, we designed the Enhanced Elbow
Method and Silhouette Coefficient Peak Detection for prelimi-
nary screening. Then, the Pareto Frontier Algorithm is utilized
to filter a subset of candidate values. Finally, the Entropy-
Weight Method is applied to compute the optimal number of
clusters.
Enhanced Elbow Method. The traditional elbow method
relies on visual inspection of the SSE (Sum of Squared Errors)
curve’s inflection point to determine the optimal number
of clusters, which is subjective and unstable. The enhanced
method quantifies the inflection point trend by calculating
the first-order difference (∆(k)) and second-order difference
(∆2(k)) of SSE, then automatically determines the threshold
θe based on the statistical characteristics of the second-order
differences (mean + 2 standard deviations). Finally, it selects
the smallest k value satisfying ∆2(k) < θe as the optimal
number of clusters. This approach not only reduces human
intervention but also more accurately captures the ”diminish-
ing returns” point of the SSE curve. It demonstrates strong
applicability across different data distributions, significantly
improving robustness.



Silhouette Coefficient Peak Detection. The silhouette coef-
ficient evaluates clustering quality by measuring both intra-
cluster compactness and inter-cluster separation, with the op-
timal number of clusters typically corresponding to local max-
ima of the coefficient curve. While traditional methods simply
select the global maximum, this approach can be misled
by data noise or random fluctuations. Our enhanced method
addresses this limitation by first computing the first derivative
(S′(k)) of the silhouette coefficient sequence, then identifying
candidate peaks through zero-crossing points (where S′(k) =
0). These candidates are further refined by selecting only
those local maxima whose magnitudes exceed a significant
threshold (e.g., 30% of the global maximum). This two-stage
process effectively mitigates noise sensitivity while preserving
the silhouette coefficient’s inherent ability to discern cluster
structure, resulting in more stable and robust determination of
the optimal cluster number.
Pareto-Optimal Solution Determination. In the context of
clustering analysis, the evaluation of clustering quality often
involves multiple internal indices, such as the Silhouette
Coefficient, Davies-Bouldin Index, Calinski-Harabasz Index,
and SSE. These indices, while providing valuable insights
into different aspects of clustering performance, often exhibit
conflicting characteristics [23]. For instance, optimizing one
index may lead to suboptimal results for another, as each
index prioritizes different aspects of clustering quality, such
as compactness, separation, or variance ratios. Algorithm 2
outlines a non-dominated sorting process. It starts by comput-
ing dominance counters and dominated sets for all candidates.
Then, it initializes the first front. In each iteration, it identifies
non-dominated solutions (those with a dominance counter of
zero) and assigns them to the current front. For each solution
in the current front, it updates the dominance counters of the
solutions they dominate. This process repeats until all solutions
are sorted into fronts, effectively categorizing them based on
their dominance relationships.
Entropy-Weight Method. To objectively rank clustering can-
didates derived from the preceding steps, the Entropy-Weight
Method (EWM) is adopted. EWM quantifies the relative
importance of evaluation indices by measuring their infor-
mation entropy, thus reducing subjective bias. Indices with
higher variability (lower entropy) are assigned greater weights,
ensuring a balanced and data-driven evaluation. Specifically,
the indices considered are SSE, SC, CH Index, and DBI.

Following EWM, the entropy Hj of each index is first com-
puted, and the objective weight wj is then derived accordingly,
providing a data-driven basis for ranking clustering candidates.

The entropy value Hj and the corresponding weight wj are
defined as:

wj =
1−Hj∑n

k=1(1−Hk)
, Hj = − 1

ln(m)

m∑
i=1

pij ln(pij)

(9)
Here, m denotes the number of alternatives, n = 4 denotes
the four evaluation indices considered in this study, xij the
raw score on index j for alternative i, pij its normalized value

Algorithm 2 Non-dominated Sorting Algorithm

Input: Candidate set Kcandidate

Output: Non-dominated fronts F
1: for all ki ∈ Kcandidate do
2: Compute dominance counter ni and dominated set Si

for ki
3: end for
4: Initialize front rank r ← 1
5: Initialize front Fr ← ∅
6: repeat
7: for all ungraded ki do
8: if ni == 0 then
9: Assign ki to front Fr

10: end if
11: end for
12: for all kj ∈ Fr do
13: for all km ∈ Sj do
14: Decrement nm by 1: nm ← nm − 1
15: end for
16: end for
17: Increment r by 1: r ← r + 1
18: until all solutions are graded

obtained by dividing xij by the total score of index j across
all alternatives, Hj the entropy of index j, and wj its weight.

B. Termination Criterion for Fuzz Testing

Definition. The growth of covered clusters is defined as:

∆C(t) = C(t)− C(t− 1), (10)

where C(t) represents the number of covered clusters at time t.
As fuzz testing progresses, if ∆C(t) remains below a threshold
ϵC for a sustained period, it indicates that new test cases no
longer trigger significant behavioral patterns.

By monitoring the trend of ∆C(t), the system can dynam-
ically assess whether the newly generated test cases meaning-
fully expand behavioral coverage.

Similarly, crash count growth is defined as:

∆F (t) = F (t)− F (t− 1), (11)

where F (t) represents the number of crashes detected at
time t. In fuzz testing, crash events are critical indicators for
identifying vulnerabilities. If ∆F (t) remains below a threshold
ϵF for an extended duration, it suggests that the fuzzer has
reached saturation in detecting new crashes.

The termination mechanism for fuzz testing is governed
by saturation and tolerance thresholds. An evaluation metric
C, defined in terms of indicators such as function coverage,
crash counts, coverage of potentially vulnerable functions, and
coverage of function clusters, is initialized. Fuzz tests are then
executed iteratively with continuous updates of this metric. If
the change in C (∆C) falls below the termination tolerance
ϵ within a specified saturation threshold δ, the process is
considered saturated and terminates early; otherwise, testing
proceeds until a predefined timeout condition is met. In this



TABLE II: Cluster Dataset Overview

Subject Version LoC # Functions

Gif2png 2.5.3 988 27
JasPer 1.900.0 17,385 720
Libpcap 1.9.0 12,076 497
LibTIFF 4.1.0 19,527 826
Libxml2 2.9.10 85,466 2,982
nm 2.29 68,667 2,126
objdump 2.29 89,961 2,701
size 2.29 68,115 2,101
POJ104 – 1,885,262 168,990

Total – 2,247,447 180,970

study, we further refine the termination criterion by incorporat-
ing both function-cluster coverage and crash-growth behavior.
Specifically, the fuzzing process terminates when either (i) the
increase in function-cluster coverage stagnates (∆C(t) < ϵC),
(ii) the growth in crash count within each cluster stagnates
(∆F (t) < ϵF ), or (iii) the allocated testing time or resource
budget is exhausted.

IV. EXPERIMENTAL SETUP

A. Research Questions

Our fuzzing termination criterion is only effective when the
clustering results are accurate. If the clustering performance is
poor, the fuzzing campaign may fail to maintain a sufficient
scale, thereby inadequately covering most function types.
Specifically, an insufficient number of clusters could lead to
premature termination before discovering bugs, whereas an
excessive number of clusters would render the criterion similar
to function coverage-based approaches, losing the advantage
of early termination. Based on these considerations, we raise
the following two research questions:

1) RQ.1: Function Clustering Performance. How do differ-
ent clustering methods compare in functional clustering tasks,
and can a multi-metric fusion algorithm effectively identify
the optimal number of clusters?

2) RQ.2: Analysis of Fuzzing Termination Criteria. What is
the tradeoff between reduced fuzzing time and potential missed
security bugs when using function cluster coverage (combined
with function crashes) as a stopping criterion, compared to
traditional metrics like crash count, regular function coverage,
or potential vulnerability function coverage?

B. Function Clustering

1) Subject Programs: To validate the effectiveness of our
clustering approach and the proposed algorithm for select-
ing optimal cluster numbers, we employ the POJ-104 [24]
dataset—a well-established benchmark for function-level code
analysis. This dataset contains 104 programming problems,
each solved by multiple users in C/C++, resulting in numerous
syntactically diverse but semantically similar implementations.
Such characteristics make POJ-104 ideal for evaluating clus-
tering methods, as solutions to the same problem inherently
form functional clusters despite variations in coding style.
The dataset’s implicit ground truth (functions solving identical

problems) enables rigorous assessment of clustering accuracy.
POJ-104’s balance of diversity and consistency has made it
a standard choice for studies on code clone detection, AI-
assisted programming, and semantic code similarity.

2) Function Encoding: We employ Tree-sitter [25] to parse
the compiled library’s AST and extract the implementation
code for all functions, which we identify by filtering nodes
where decl.kind == "Function"; in this study, a func-
tion is strictly defined as a standard C99 function, encompass-
ing both its declaration and full implementation. Then, we
employ the CodeBERT-base model to extract features from
source code in the POJ104 dataset. Each code snippet is trun-
cated/padded to a fixed length of 512 tokens before being fed
into the model, and the 768-dimensional vector corresponding
to the [CLS] token is extracted as the code representation. The
tokenizer normalizes functions with truncation=True
and padding=True, fixing each snippet to 512 tokens—
the maximum input length of CodeBERT, since it follows
the BERT-base [26] architecture. The experiments are im-
plemented using the PyTorch framework, with the pretrained
model loaded via the HuggingFace Transformers library. All
feature extraction processes are executed in batches on GPU,
and the resulting feature vectors are stored in numpy format
for downstream tasks.

3) Clustering Method: In this clustering analysis, we em-
ployed a variety of methods beyond just K-Means. We also
utilized DBSCAN [27], which is effective for identifying
clusters of arbitrary shapes and handling noise; Agglomerative
clustering [28], a hierarchical approach that builds nested
clusters; and Gaussian Mixture Models (GMM) [29], which
models data as a mixture of Gaussian distributions to capture
more complex cluster structures. To demonstrate both the ne-
cessity and validity of our proposed cluster selection approach,
we adopt four representative clustering algorithms. Among
them, methods such as K-Means, GMM, and Agglomerative
Clustering (which require the number of clusters k as an input)
are used for internal comparisons to validate the effectiveness
of our approach, whereas DBSCAN (which does not require
k) is contrasted with these methods to highlight its necessity.
The optimal method is selected for subsequent fuzz testing.
Pertaining to the algorithm’s parameters, DBSCAN does not
require the number of clusters k as an input. Instead, we
sample five values of the neighborhood radius ε, chosen
between the 10th and 90th percentiles of the pairwise distance
distribution, to ensure a stable operational range. For the
other three algorithms, the number of clusters k is explicitly
specified and varied from 2 to 600. The upper bound of 600
is determined by assuming a minimum of three functions per
cluster, given the total number of functions in the target library.

4) Evaluation Metrics: Since the POJ-104 dataset con-
tains ground truth labels, we employ two external evaluation
metrics-Adjusted Rand Index (ARI) [30] and Normalized
Mutual Information (NMI) [23] to quantitatively assess clus-
tering performance. ARI measures the similarity between the
clustering results and ground truth by correcting for chance
agreements, while NMI evaluates the mutual dependence be-



TABLE III: Parameter Configuration for Stopping Criteria
Evaluation

Parameter Values Interpretation

Saturation window (δ) 2,4,6,8h Stability assessment period
Tolerance (ϵ) Varies by criterion:
- Crash-based 0,1,2 Maximum new crashes in δ
- Coverage-based 0,1,2 New functions covered in δ
- Cluster-based 0,1,2 New crash clusters in δ
Repetitions 20 Independent experimental runs

tween cluster assignments and true labels after normalization.
These complementary metrics provide rigorous validation of
how accurately each clustering algorithm reconstructs the
known classification structure. The combined use of both
metrics offers comprehensive insights into different aspects
of clustering quality relative to the reference classification.

C. Tradeoff Evaluation

1) Dataset: Our study leverages the FuzzTastic [19]
dataset, which provides comprehensive crash data and fine-
grained coverage metrics from eight state-of-the-art greybox
fuzzers: AFL [31], AFLFast [5], AFL++ [32], AFLSmart [33],
FairFuzz [34], Honggfuzz [35], MOpt-AFL [36], and MOpt-
AFL++ [37]. These fuzzers were evaluated on eight widely
used libraries and utilities (Table II), including Gif2png,
JasPer, Libpcap, Libxml2, LibTIFF, nm, objdump and size.

Each fuzzer was executed for 24 hours with 20 repeti-
tions, using initial seeds from either AFL’s repository or the
Magma [38] suite. The dataset enables a robust analysis of
efficiency-effectiveness trade-offs in fuzzing, particularly how
reducing fuzzing time impacts bug detection rates.

2) Evaluation Metrics: Following the evaluation criteria
established in this reaserch [13], we conduct a systematic eval-
uation of dynamic stopping criteria in greybox fuzzing. Our
comparative analysis examines both conventional baselines
(crash saturation, code coverage and potential vulnerable func-
tion coverage metrics) and the proposed approach. In Table III,
for the saturation window δ and tolerance ϵ parameters, we
adopt the same settings from Green Fuzzing [13] to ensure a
fair and accurate comparison. We employ two primary metrics:

• Time savings ratio: ηt = ∆t
Ttotal

× 100%, where ∆t =
Ttotal − tS (Ttotal = 24h)

• Missed bug ratio: ηb = Nmissed

Ntotal
× 100%

3) Comparison: To align with the function-level granularity
of our approach, we aggregate basic-block coverage data at
function boundaries extracted by Tree-sitter.

For vulnerable function coverage, we predict potentially
vulnerable functions in the target libraries using six ma-
chine learning approaches—Random Classifier, Generalized
Linear Model, Multi-Layer Perceptron, Random Decision
Forest, Stochastic Gradient Boosting, and Support Vector
Machine—adopted from Green Fuzzing [13], and track their
coverage during fuzzing. The fuzzing process is terminated
if, within a specified saturation window (e.g., 2 hours), no
additional vulnerable functions are covered and the coverage
increase remains below a defined tolerance (ϵ); in such cases,

Fig. 2: Clustering Metrics (Top) and External Metrics Com-
parison (Bottom)

both the runtime and the number of discovered bugs are
recorded.

V. EVALUATION

A. RQ1:Function Clustering Performance.

The experimental investigation into clustering methodolo-
gies applied to the POJ-104 dataset reveals nuanced patterns
in algorithmic performance and cluster number determination.
Across K-Means, DBSCAN, Agglomerative, and GMM ap-
proaches, the internal validation metrics exhibit characteristic
trade-offs between cluster cohesion and separation.

1) RQ1.a: How do different clustering methods perform
for functional clustering tasks?: Based on a comparative
analysis of four clustering methods (K-Means, DBSCAN,
Agglomerative, and GMM), the internal evaluation metrics
reveal distinct trends. Figure 2 presents the performance of the
four clustering algorithms evaluated using four internal met-
rics—SSE, SC, DBI, and CH Index—as well as two external
metrics, ARI and NMI in POJ104. From Figure 2 preliminary
implementation of hierarchical clustering demonstrated lim-
ited efficacy for functional clustering tasks requiring adaptive
determination of optimal cluster numbers. The silhouette coef-
ficient (SH) and Calinski-Harabasz index (CH) exhibit a sharp
decline at k = 2, stabilizing around 0.027 and 14, respectively.
The Davies-Bouldin index (DBI) gradually increases to 3.0088
within k = 2 to k = 47, followed by a slow decline, while
the sum of squared errors (SSE) shows an initial steep drop,
leveling off after k = 105. For clustering algorithms such



Fig. 3: ARI and NMI vs. Number of Clusters

Fig. 4: Visualization of Clustering Results

as DBSCAN, which do not require a predefined number of
clusters k but instead rely on parameter settings, the resulting
clustering performance is generally not superior in terms of
evaluation metrics compared with the other three methods, and
thus cannot be considered optimal. Among the three primary
methods, Agglomerative clustering demonstrates marginally
lower SH values until k = 247, after which it surpasses
the others, though differences remain minimal. For CH, all
methods perform similarly. Notably, Agglomerative clustering
yields significantly higher DBI values between k = 12 and
k = 57, converging thereafter. In terms of SSE, Agglomerative
clustering initially produces slightly higher values before k,
but lower values subsequently. These findings suggest context-
dependent performance trade-offs among the methods.

Summary(RQ.1-a). Agglomerative clustering demon-
strates marginal advantages in specific metrics, such
as DBI and SSE, after certain thresholds (k = 247
and k = 57, respectively). However, all methods
exhibit context-dependent trade-offs, with no single
method consistently outperforming the others across
all evaluation metrics.

2) RQ1.b: Can the proposed cluster number selection
algorithm effectively identify optimal clusters?: Figure 3

TABLE IV: Accuracy (%) of Different Methods

Complete w/o Elbow w/o Silhouette w/o Pareto

Accuracy (%) 80.00 67.80 75.14 75.00

“w/o” denotes “without”.

displays the ARI and NMI scores corresponding to the
clusterings selected by the clustering selection algorithm
on the POJ104 dataset. The proposed clustering algorithm
demonstrates robust performance in automatically selecting
the optimal number of clusters across varying k values (k =
[37.0, 75.0, . . . , 550.0]) with Figure 3. Evaluation metrics
reveal a normalized mutual information (NMI) score of 79%
(exceeding the 0.5 threshold) [39], indicating strong cluster
separation. However, the adjusted Rand index (ARI) yields
consistently low values (< 0.08), which—combined with vi-
sual assessment showing no distinct cluster patterns—suggests
ARI may be unsuitable for this dataset in Figure 4. For
the objective function library, conventional supervised metrics
(NMI/ARI) cannot be computed due to missing ground-truth
labels.

Summary(RQ.1-b). Despite ARI’s low values (<
0.08), the proposed algorithm achieves strong perfor-
mance, with a normalized mutual information (NMI)
score of 79%, surpassing the 0.5 threshold for mean-
ingful cluster separation.

3) RQ1.c: How effective are the individual components of
the clustering algorithm according to the ablation study?:
We conduct an ablation study to assess the contribution of
each component in determining the number of clusters by
sequentially removing the Enhanced Elbow method, Silhou-
ette Coefficient Peak Detection, and Pareto optimization. The
EWM ranks candidate clusterings, so an ablation study is
not applicable here. Performance is measured by the ratio of
selected k values with NMI≤ 0.5. Table IV presents the results
of the ablation study conducted under the K-means setting.The
results show that the complete method achieves the highest
accuracy (80.00%), underscoring the synergistic effect of all
components. Removing the Elbow module results in the largest
drop in accuracy (67.80%), indicating its critical importance.
Excluding Silhouette or Pareto also reduces performance
(75.14% and 75.00%, respectively), but to a lesser extent.
Overall, all modules contribute to the final performance, with
the Elbow method being the most significant.

Summary(RQ.1-c). The ablation study confirms that
each component contributes positively to the overall
performance, as evidenced by the drop in accuracy
when any module is removed, with the complete
method achieving the highest accuracy.
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Fig. 5: Tradeoff results of our stopping criterion relative to the saturation of potential vulnerability function coverage.

B. RQ2: Analysis of Fuzzing Termination Criterion

Comparison: Crash Stopping Criterion. For Gif2png,
Jasper, LibTIFF, Libxml2, and objdump, our proposed termi-
nation criterion achieved significantly earlier termination com-
pared to the crash-count-based criterion. Table V compares
our proposed stopping criterion with three other criteria based
on time advancement and the number of missed bugs. The
data in the table correspond to average values across different
combinations of the saturation window δ and the tolerance
parameter ϵ, as specified in Table III. Specifically, our method
reduced testing time by 5.0 to 9.7 hours, representing 20%–
40% of the total fuzzing duration (Table V). In terms of bug
detection, our approach missed only 0.69 bugs on average
(6% of all bugs) despite earlier termination. For Libpcap, nm,
and size, our method slightly delayed termination by 0.5–
1.3 hours (2%–5% of total time) but discovered additional
bugs.Specifically, our approach reduces testing time by an
average of 3.1 hours (13.1%) while maintaining effective bug
detection - 77.5% of terminated campaigns miss no bugs, 8.6%
miss one bug, and 12.7% miss two or more bugs on average.
Remarkably, our criterion additionally discovers at least one

extra bug in 1% of campaigns compared to crash saturation.

Summary(RQ.2-a). Our stopping criterion reduces
fuzzing time by 4.1 hours with minimal bug loss
(avg. 0.7, 6%) compared with crashes saturation, while
occasionally discovering additional bugs (1% cases).
The approach demonstrates superior cost-effectiveness,
with 77.5% of campaigns missing no bugs despite
significant time savings.

Comparison: Function Coverage Stopping Criterion. Our
stopping criterion demonstrates significant efficiency improve-
ments over traditional function-coverage saturation, reducing
fuzzing time by 1.5–8.3 hours (6%–34.6%) for most test con-
figurations while missing only 0.31 bugs on average (Table V).
For optimal cases like AFL on objdump achieved 18-hour
reductions (75%), though littile savings occurred for JasPer
due to its high density of vulnerable functions that maintained
campaign activity. Our result reveals that 81.8% of campaigns
missed zero bugs, with average time savings of 4 hours
(16.1%) when bugs were missed. Only 7.6% of campaigns



TABLE V: Average Performance Across All Fuzzers by Sub-
ject

Subject Timeout Bugs

T1 T2 T3 B1 B2 B3

Gif2png 7.355 0.000 0.000 0.414 0.000 0.000
JasPer 9.701 1.536 1.433 3.692 1.213 1.236
LibTIFF 7.972 6.896 4.332 0.722 0.686 0.467
Libpcap −1.138 2.792 0.286 −0.017 0.033 −0.009
Libxml2 6.297 2.104 0.226 0.567 0.298 0.027
nm −0.567 3.610 0.905 −0.006 0.006 0.000
objdump 5.074 8.381 7.221 0.161 0.304 0.284
size −1.367 4.300 1.210 −0.008 0.013 0.003

Average 4.166 3.702 1.952 0.691 0.319 0.250

T1-T3 (timeout differences) quantify how much earlier our
function clustering metric terminates compared to baseline
methods (crash counts, code coverage, vulnerable function cov-
erage); B1-B3 (bug detection differences) indicate additional
bugs missed by our metric.

missed two or more bugs, confirming the criterion’s reliability.
The trade-off between time savings and bug detection remains
favorable, with most configurations benefiting from substantial
efficiency gains without compromising vulnerability discovery.

Summary(RQ.2-b). Our stopping criterion achieves
significant efficiency improvements, reducing fuzzing
time by 1.5–8.3 hours (6%–34.6%) for most config-
urations while missing only 0.31 bugs on average.
Analysis shows 81.8% of campaigns missed zero bugs,
with average time savings of 4 hours (16.1%) when
bugs were missed, and only 7.6% missed two or more
bugs, confirming its reliability and favorable trade-off
between efficiency and bug detection.

Comparison: Vulnerability Function Coverage Stopping
Criterion. Figure 5 and Figure 6 further illustrate the
tradeoff results of our stopping criterion in comparison with
the saturation of vulnerable function coverage. As shown in the
Figure 5, the proposed fuzzing termination criterion terminates
1.4–7.2 hours earlier than the vulnerability function coverage-
based approach for Jasper, Libtiff, objdump, and size, while
missing only 0.25 bugs on average. For nm and Libxml2, our
method slightly outperforms the coverage-based strategy. In
the case of Libpcap, although the proposed criterion extends
fuzzing duration by 0.9 hours, it detects additional bugs,
demonstrating its effectiveness.

Figure 6 illustrates that the majority of campaigns (86.5%)
achieved complete bug detection, while those that missed bugs
demonstrated an average reduction in runtime of 2.1 hours
(equivalent to 8%). Instances where two or more bugs were
missed accounted for only 5.1%, underscoring the robustness
of the proposed criterion. This demonstrates that the method
effectively balances efficiency and accuracy, enabling signifi-
cant time savings while ensuring the majority of vulnerabilities
are uncovered.
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Fig. 6: Time saved by the fuzzing stopping criterion versus
undetected bugs compared to vulnerability function coverage
saturation.

Summary(RQ.2-c). The proposed fuzzing termina-
tion criterion outperforms the vulnerability function
coverage-based approach by reducing runtime by
1.4–7.2 hours for most targets while missing only 0.25
bugs on average. Additionally, 86.5% of campaigns
achieved complete bug detection, highlighting its ro-
bustness and efficiency.

VI. DISCUSSION

A. Function Clustering

The Agglomerative Clustering method in our function cluster-
ing framework is slower but yields better clustering coefficient
results, making it suitable for scenarios where clustering
quality is prioritized. Its hierarchical nature leads to higher
computational complexity, but the resulting clusters are more
meaningful and consistent, which is crucial for downstream
tasks like code analysis and software maintenance. DBSCAN,
which does not require predefining the number of clusters k,
performed poorly and still needed parameter tuning for optimal
results. The trade-off between speed and quality needs to be
balanced based on specific application requirements.

To improve function encoding, we can fine-tune CodeBERT
using API call sequences and function structure data. However,
in real-world datasets without ground-truth labels, quantitative
metrics like ARI and NMI cannot be applied. Instead, qual-
itative analysis (e.g., assessing cluster coherence and inter-
pretability) or domain-specific validation (e.g., matching with
known software modules) can be used to evaluate the practical
effectiveness of clustering results.

B. Fuzzing Termination Criterion

Our function clustering-based fuzzing termination criterion
can terminate fuzzing earlier compared to the current three cri-



teria (crash count, function coverage, and vulnerable function
coverage) while missing very few vulnerabilities. In real-world
corporate or research scenarios, fuzzing typically runs for 7
days × 24 hours or even longer. By applying our termination
criterion, approximately 30% of time and computational re-
sources can be saved. The reclaimed resources allow for more
in-depth testing of specific functions or multiple paths, thereby
improving overall resource utilization efficiency. The function-
clustering-based termination criterion may have limitations, as
its effectiveness often depends on the characteristics of the
target program and the type of crash patterns. It might work
better for programs with clear function call relationships or
those prone to crashes, but could be less effective for event-
driven applications or stable systems where crashes are rare. To
address diverse program types, it may be worth exploring the
combination of multiple termination criteria—such as specific
crash counts, function coverage growth rates, or vulnerable
function coverage—as a potential way to improve flexibility
and comprehensiveness in testing.

VII. THREATS TO VALIDITY

A. External Validity

This threat category concerns the generalizability of our find-
ings to other contexts, such as different programs, clustering
algorithms, or fuzzing tools. Due to the scarcity of realisti-
cally annotated datasets for function-level library clustering
analysis, we resort to POJ104. However, as its functions are
implemented by different authors for varied problems, stylistic
and structural variations may render clusters more separable
compared to real-world projects with common conventions.
Since this study focuses on fuzzing termination criteria, the
methodology is inherently adaptable to various fuzzing tools.

B. Internal Validity

This threat category pertains to the reasonableness of the
methodology and experimental design. Since the actual ob-
jective function library lacks authentic clustering metrics, we
comprehensively integrated multiple internal clustering indica-
tors to determine an appropriate number of clusters. Given that
these indicators are mutually conflicting, we adopted a multi-
objective optimization approach, which enables the derivation
of a rational cluster count.

Regarding the evaluation of fuzz testing termination criteria,
we utilized the comprehensive coverage dataset provided by
Fuzztastic, which encompasses diverse function libraries and
multiple fuzz testing tools with repeated executions. This
approach mitigates, to some extent, the randomness inherent
in fuzz testing.

VIII. RELATED WORK

Code clustering. Prior research on code similarity has pre-
dominantly focused on text-based or semantic analysis meth-
ods, leveraging techniques such as Abstract Syntax Trees
(ASTs) and machine learning models to categorize code
segments based on their functionality and structure [40]–
[42]. However, these approaches often rely on predefined

similarity metrics like Euclidean distance, which may not
effectively capture the nuances of complex code. Research
on function clustering remains relatively under-explored, par-
ticularly in terms of analyzing relationships among functions
within a codebase. There is still limited understanding of
how functions with similar functionalities or implementation
patterns correlate with one another. Notably, functions that
share analogous structures or purposes may also exhibit similar
vulnerabilities, suggesting that clustering techniques could aid
in identifying security flaws more systematically. Building on
this foundation, our work introduces a novel clustering method
that dynamically selects the optimal number of clusters by
integrating multiple internal clustering metrics, including the
Silhouette Coefficient, Davies-Bouldin Index (DBI), SSE, and
Calinski-Harabasz Index (CHI). This multi-metric approach
aims to enhance the robustness and adaptability of clustering
results, addressing the limitations of traditional single-metric
methods.
Fuzzing Stopping Criteria. Accurately determining the op-
timal stopping point for fuzzing campaigns remains a critical
challenge in fuzz testing. While numerous studies [43], [44]
focus on optimizing code coverage techniques to enhance
test suite effectiveness, they often overlook aspects such as
code similarity analysis, which could refine early stopping
criteria. Current practices [14] rely on fixed time budgets
(e.g. 24 hours to 7 days) for fuzzing evaluations , potentially
leading to inefficient resource usage. Recent advancements in
green fuzzing [13] emphasize energy-efficient fuzzing strate-
gies, seeking to balance computational cost and effectiveness,
further highlighting the need for adaptive and resource-aware
stopping criteria in fuzzing campaigns.

IX. CONCLUSION

Existing fuzz testing termination criteria based on crash
counts, function coverage, and potential vulnerability function
coverage either result in excessively long fuzz testing that
wastes resources or terminate the testing too early, failing to
ensure the quality of fuzz testing. To address these issues,
we proposed a method to determine fuzz testing termina-
tion by combining function clustering with multi-objective
optimization. Through clustering analysis, we discovered that
vulnerabilities are unevenly distributed, primarily concentrated
in a few specific clusters. By leveraging the growth of cluster
numbers or the collapse of specific clusters, our approach
effectively identifies the optimal termination point for fuzz
testing. Compared to existing termination criteria, our method
significantly reduces testing time while maintaining a high
vulnerability discovery rate with minimal loss. Specifically, it
saves up to 7.2 hours compared to the state-of-the-art methods,
while only missing 0.28 bugs.
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